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Abstract

We compared a set of methods for estimating fractional green vegetation cover ( fc) over a ¨4000 km2 region of central New Mexico,

USA. The models used were trained and tested independently using high-resolution, true-color orthoimagery with 0.3 m spatial resolution.

Simple NDVI-based methods performed well for estimating fc regionally but overestimated fc in sparsely vegetated areas with bright soils,

and areas with abundant non-photosynthetic vegetation (e.g. dry shrubs). Three-, four-, and five-endmember spectral mixture models (SMA3,

SMA4, and SMA5) were also compared. Constrained versions of these models all produced similar accuracy regionally, but constrained and

unconstrained versions of the SMA5 model best captured fc for the rarer landscapes (bright soils, riparian vegetation) found throughout the

region. This indicates that heterogeneous landscapes can be stratified into relatively homogeneous strata, and three or four endmembers may

be adequate to characterize the spectral variability within each stratum. Including NDVI along with the six reflective bands of ETM+ data,

provided enough data dimensionality to support the five-endmember SMA model. This permitted a more complete representation of the

range of spectral landscape types that are germane for separating out green vegetation in this semi-arid region. We also note that green woody

vegetation and green grass cover should be spectrally represented by two different endmembers in SMA because these two vegetation types

are spectrally different, particularly in the near-infrared (NIR) wavelength.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Vegetation plays an important role in the exchanges of

carbon, water, and energy at the land surface (Hoffmann &

Jackson, 2000; Nemani & Running, 1996; Schimel et al.,

2001; Tueller, 1987; Ward & Robinson, 2000). Thus,

fractional green vegetation cover ( fc) is an important element

of models that attempt to account for these exchanges

(Deardorff, 1978; Gutman & Ignatov, 1998; Hirano et al.,

2004; Wittich & Hansing, 1995; Zeng et al., 2002). fc is also

a sensitive indicator of land degradation and desertification in

arid and semi-arid regions and, if easily measured, can be

used to study these processes (Purevdorj et al., 1998). Remote

sensing provides a seemingly obvious data source for
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quantifying fc over large areas. However, most remote

sensing data are too coarse for the direct measurement of fc.

On arid and semi-arid lands, vegetation is often sparsely

distributed, and even relatively fine-resolution remote sens-

ing data (e.g. 30�30 m data from Landsat) contain spectra

that result from the mixed reflectance of vegetation, bare soil,

and shadow. Thus, units of vegetation are not individually

resolved. Spectral mixture analysis (SMA) has often been

used to estimate subpixel canopy proportions from multi-

spectral satellite data (Adams et al., 1995; Rashed et al., 2003;

Roberts et al., 1998; Small, 2001, 2003;Wu&Murray, 2003).

Good results have been achieved using three-and four-

endmember models, and methods based on the normalized

difference vegetation index (NDVI), including a two-

endmember SMA model (Gutman & Ignatov, 1998; Qi et

al., 2000; Wittich & Hansing, 1995) and a simple regression

method (Elmore et al., 2000; Hurcom & Harrison, 1998).
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Most of these methods have been applied to arid and semi-

arid environments (e.g. Asner & Heidebrecht, 2002; Elmore

et al., 2000; Qi et al., 2000; Smith et al., 1990) but, to our

knowledge, their relative accuracy has not been quantita-

tively evaluated.

The number of endmembers included in SMA is con-

strained by the dimensionality of the satellite image to which

the model is applied (Theseira et al., 2002). For Landsat data,

a maximum of four endmembers are usually used because the

three visible bands are strongly correlated with each other

(Small, 2001; Theseira et al., 2002). However, four endmem-

bers may still be inadequate to spectrally characterize the

complex and heterogeneous landscapes in semi-arid regions.

The use of more than four endmembers in a single mixture

model for Landsat data has received little attention.

We compared three-, four-, and five-endmember SMA

models, the NDVI-based SMA model, and the simple

NDVI-based regression model for estimating fc in a

heterogeneous, semi-arid region (Albuquerque, New Mex-

ico) from Landsat ETM+ data. These models were

calibrated and statistically evaluated using spatially inde-

pendent data sets of vegetation fraction derived from high-

resolution orthoimagery. Our objective was to evaluate how

the properties of the mixture model used to estimate fc
affected the accuracy of the model estimates in this

heterogeneous, semi-arid environment.
2. Background

It is commonly noted that reflectance spectra derived

from satellite-based sensors constitute mixed signals, in

particular when the sizes of scene objects are smaller than

the instantaneous field of view (Graetz & Gentle, 1982;

Pech et al., 1986; Strahler et al., 1986). This phenomenon is

prevalent in arid and semi-arid regions at the resolution of

Landsat data (30 �30 m), even for the basic separation of

vegetated and unvegetated lands, because the density of

vegetation is often low, and woody plants tend to be

dispersed spatially (Elmore et al., 2000). The most common

approach for characterizing ground cover at the sub-pixel

scale using remote sensing data is SMA (Adams et al., 1995,

1986; Smith et al., 1990) although other methods have also

been used, including artificial neural networks (Atkinson et

al., 1997; Pu et al., 2003), fuzzy classifiers (Foody, 1996),

maximum likelihood classifiers (Foody et al., 1992; Häme

et al., 2001), regression trees (DeFries et al., 1997; Yang et

al., 2003), decision trees (McIver & Friedl, 2002), and

simple regression based on NDVI (Elmore et al., 2000).

An important assumption of linear SMA is that the spectral

signature of a given pixel is the linear, proportion-weighted

combination of the endmember spectra (Smith et al., 1990).

An endmember is a pure surface material or land-cover type

that is assumed to have a unique spectral signature (referred to

as the endmember signature). The spectral variability within

an endmember is usually assumed to be minimal or
negligible. The selection of endmembers is critical for the

success of a mixture model. Endmember signatures can be

directly selected from the image (image endmembers), or

extracted from field or laboratory spectra of known materials

(reference endmembers) (Adams et al., 1995). There are

numerous approaches for deriving image endmembers (e.g.

see Boardman et al., 1995; Oki et al., 2002; Rashed et al.,

2003; Small, 2003; Tompkins et al., 1997; Wu & Murray,

2003) including the use of two-dimensional feature space

plots (Peterson & Stow, 2003) and identification of pure

pixels with reference to field data or higher-resolution remote

sensing data (Shoshany & Svoray, 2002). We combined these

latter two approaches in this study.

Although several studies have demonstrated and modeled

nonlinear spectral mixing between vegetation and soil (e.g.,

Borel & Gerstl, 1994; Huete, 1986; Huete et al., 1985; Ray &

Murray, 1996) the effects of multiple scattering or nonlinear

mixing are assumed to be negligible in most SMA applica-

tions, and linear SMA models have proven reasonably

effective in estimating endmember fractions (Adams et al.,

1986, 1995; Elmore et al., 2000; Small, 2001, 2003; Smith et

al., 1990; Theseira et al., 2002). In general, linear models are

more widely used due to their simplicity, reasonable effective-

ness and interpretability. Themajority of linear SMAmodeling

applications are restricted to three or four endmembers due to

the dimensionality of Landsat data on which most SMA

analyses have been based (e.g., Adams et al., 1995; Asner &

Heidebrecht, 2002; Elmore et al., 2000; Small, 2001, 2003).

A highly-simplified SMA model is the two-endmember

model based on NDVI (Wittich & Hansing, 1995), referred

to as the NDVI–SMA model hereafter. NDVI–SMA

assumes that a given pixel consists of only green vegetation

and bare soil, and thus its NDVI value is the linear

combination of contributions from these two components

(Gutman & Ignatov, 1998; Qi et al., 2000; Wittich &

Hansing, 1995). With only two endmembers, NDVI–SMA

consists of a single equation, which simplifies the endmem-

ber selection process and substantially improves computa-

tional efficiency. This model has been applied to estimate fc
at both regional and global scales (Gutman & Ignatov, 1998;

Qi et al., 2000; Wittich & Hansing, 1995; Zeng et al., 2000).

Regression relations between NDVI and known vegeta-

tion abundance have also been used to estimate fc (Elmore et

al., 2000; Garcı́a-Haro et al., 1996; Hurcom & Harrison,

1998). This method is referred to as the NDVI-regression

method below. Hurcom and Harrison (1998) showed that

NDVI provides a reliable and efficient measure of vegeta-

tion abundance. However, laboratory analyses have shown

that vegetation fraction estimates based on spectral mixture

modeling are less sensitive to background soil reflectance

than those estimated using the NDVI-regression method

(Elmore et al., 2000; Garcı́a-Haro et al., 1996). In this paper,

we evaluated the relative accuracy of three-, four-, and five-

endmember SMA models (SMA3, SMA4, and SMA5,

respectively), and the NDVI–SMA and NDVI-regression

methods for estimating fc within the range of cover present
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along a gradient from semi-desert scrub to southwestern

montane forest in an area near Albuquerque, New Mexico.
3. Study region

This study was conducted over an area of approximately

3690 km2 located in central New Mexico (Fig. 1). Wide

valleys in this region are sparsely vegetated (about 0–20%),

primarily occupied by desert grassland, and open shrubland,

with occasional woodlands of varying density. High

elevation mountainous areas are dominated by montane

coniferous forest, generally descending through zones of

montane scrub, coniferous and mixed woodland, juniper

savanna, and plains-mesa sand scrub (Earth Data Analysis

Center, 1991). Mean annual temperature is 11.87 -C over

the region, but local values vary along an elevation gradient

from 2.69 to 13.72 -C. Likewise, average annual precip-

itation is 324 mm, but ranges from 220 to 758 mm across

the region. Precipitation is of monsoonal origin and the

rainy season lasts from July to October. The rest of the year

is generally dry except at higher elevations.

Coniferous forest, coniferous woodland, and juniper

savanna are dominated by evergreen plants, which retain

photosynthetic tissue during the dry season. Shrubs are

sparsely distributed in flat areas and foothills, whereas trees

are more densely distributed in the mountainous areas.

Annual and perennial grasses and herbs emerge at the onset

of the rainy season and senesce shortly after its conclusion,

although herbaceous vegetation (primarily grass and crops)

may also be emergent in riparian and urban areas during the

dry season. Urban areas (Albuquerque) were not included in

the analysis.
Fig. 1. Location of the study region in central New Mexico. Awide variety of natur

(A), montane coniferous forest (B), coniferous and mixed woodland (C), junipe

grassland (G). The green indicates a NPV-dominated area. The left portion of

background is dominated by light soil. The red rectangle indicates riparian grass

figure legend, the reader is referred to the web version of this article.)
4. Data

The dates of the remote sensing imagery used for this

study coincide temporally, and fall within a period of the

growing season (March) when the scene components of

interest are most spectrally separable. In March, green

vegetation primarily includes evergreen trees and shrubs.

Herbaceous vegetation in riparian areas has a higher

reflectance than evergreen woody vegetation, particularly

in the near-infrared wavelength, and could thus be treated as

a separate endmember in our analysis.

4.1. High-resolution orthoimagery

True-color high-resolution (0.3 m) orthoimagery was

acquired in March, 2002, and is available from the USGS

(http://seamless.usgs.gov). We used these data to produce

training and validation datasets for developing and evaluat-

ing mixture models. The orthoimagery was available for

most of the study region (Fig. 1).

4.2. Landsat data and processing

All the methods described above were performed using a

cloud-free Landsat ETM+ image (Path 33, Row 36)

acquired on March 28, 2002. The Landsat ETM+ image

consists of six reflective bands (30 m), one thermal band (60

m), and one panchromatic band (15 m). The six reflective

bands were used in our study.

The Landsat ETM+ image was georeferenced using

sixty-four ground control points (GCP) selected with

reference to 1 :24,000 USGS topographic maps. The geo-

metric correction was performed using a first-order trans-
al vegetation types are distributed in this region: subalpine coniferous forest

r savanna (D), montane scrub (E), plains-mesa sand scrub (F), and desert

the area delineated by the blue rectangle is a barren area where the soil

(Green Vegetation I). (For interpretation of the references to colour in this

http://seamless.usgs.gov
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formation with an overall root-mean-squared error (RMSE)

of between 0.3 and 0.4 pixel.

The digital number (DN) values of the geometrically-

corrected ETM+ data were converted to at-satellite radiance

using the following equation (Markham & Barker, 1987;

Price, 1987):

Lk ¼ LMAXk � LMINkð Þ= QCALMAX� QCALMINð Þð Þ
� QCAL� QCALMINð Þ þ LMINk ð1Þ

where Lk is at-satellite radiance (W m�2 sr�1 Am�1),

QCAL=DN, LMAXk and LMINk are the spectral radiances

that are scaled to QCALMAX and QCALMIN in W m�2

sr�1 Am�1, respectively, QCALMAX=255, and QCAL-

MIN=1.

At-satellite radiances were then converted to surface

reflectance by correcting for both solar and atmospheric

effects. The general equation for converting at-satellite

radiance to surface reflectance (Moran et al., 1992) is:

q ¼ p Ls � Ldð Þ
sv E0cos hzsz þ Edð Þ ð2Þ

where q is the surface reflectance, Ls is the at-satellite

radiance, Ld is the path radiance (W m�2 Am�1), E0 is the

solar spectral irradiance (W m�2 Am�1), hz is solar zenith
angle, sv is the atmospheric transmittance along the path

from the ground surface to the sensor, sz is the atmospheric

transmittance along the path from the sun to the ground

surface, and Ed is downward diffuse radiation (W m�2

Am�1). We converted at-satellite radiance values to surface

reflectance using a dark object subtraction (DOS) approach

(Chavez, 1989) which assumes no atmospheric transmittance

loss and no downward diffuse radiation. The surface

reflectance of the dark object was assumed to be 1%, and

thus the path radiance was assumed to be the dark-object

radiance minus the radiance contributed by 1% surface

reflectance (Moran et al., 1992). The DN of the dark object is

often estimated from the ETM+ image using the lower bound

of the histogram derived from each band (Moran et al.,

1992). The DN value of the dark object here was selected as

the darkest DN with at least a thousand pixels over the entire

scene (McDonald et al., 1998; Teillet & Fedosejevs, 1995).
5. Methods

5.1. Spectral mixture analysis

The general form of the linear SMA is:

Rk ¼
XM
i¼1

fi ri;k þ ek ð3Þ

where Rk is the reflectance for each band (k), M is the

number of endmembers, fi is the fraction of endmember i,
ri,k is the reflectance of endmember i at band k, and ek is the

residual term at band k. Model fit is usually assessed using

the RMSE:

RMSE ¼
XN
k¼1

ekð Þ2=N
 !1=2

ð4Þ

where N is the number of bands, and ek is the residual term

at band k (k =1,2, . . .,N).

The derived fractions of endmembers are often subject to

the unity constraint:

XM
i¼1

fi ¼ 1: ð5Þ

The Lagrange multiplier is used to incorporate the unity

constraint into mixture models. Another constraint is that

each endmember fraction should lie between 0.0 and 1.0.

Fractions beyond this range are mathematically possible but

physically unreasonable. A properly constructed SMA

model should produce endmember fractions that meet this

condition without the constraint (Elmore et al., 2000).

Moreover, this additional constraint requires the incorpo-

ration of inequalities in a SMA model, which complicates

the implementation of the model (e.g., Heinz & Chang,

2001).

For both three- and four-endmember SMA (SMA3 and

SMA4), models were developed with and without the unity

constraint in order to assess how the constraint affected the

accuracy of vegetation fraction estimates. SMA models

were tested with different combinations of endmembers. In

each case, the endmember configuration that produced best

results was adopted for comparison with other methods.

These models were based on the six reflective bands of the

ETM+ data.

5.2. NDVI-regression method

The NDVI-regression approach provides a simple

solution to the estimation of fc (e.g., Hurcom & Harrison,

1998). A regression model is first developed based on

training data with known NDVI values and actual vegeta-

tion fractions. The model is then used to estimate vegetation

fractions for all pixels across the image.

We randomly selected sixty pixels from the ETM+

image, and the orthoimagery was used to estimate the

actual fc within a 3�3 window around each sampled

ETM+ pixel. Thus, for each sample (i.e., 3�3 window at

ETM+ resolution), actual fc was estimated from a corre-

sponding 300�300 pixel subset from the 3-band, true-

color orthoimagery.

Each orthoimagery subset was classified, using Bayesian

maximum likelihood classification, into Green Vegetation,

Non-Photosynthetic Vegetation (NPV), Dark Soil, Light

Soil, Water, Light Shadow, and Dark Shadow (Fig. 2). Each

orthoimagery subset was separately classified based on



Fig. 2. The estimation of actual fractional green vegetation cover ( fc) within the 3�3 window surrounding each sample ETM+ pixel from the high-resolution

orthoimagery. (1) An example for a sparsely vegetatedwindow; (2) An example for a densely vegetatedwindow. For each example, (a) is the ETM+ subset with 7–

4–1 band combination (the red square represents the 3�3 window surrounding the sample ETM+ pixel); (b) is the orthoimagery subset corresponding to the 3�3

window as delineated by the red square in (a); (c) is the classified image of the orthoimagery subset. A legend is provided for each classified image. GV is the

abbreviation for green vegetation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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training data selected from the subset. Dark shadows

contained shaded canopy and shaded background, while

light shadows were caused by topography or canopies.

Dark shadows were equally partitioned to green vegetation

and non-vegetation. The proportion of pixels classified as

green vegetation ( p) in each orthoimagery subset was

calculated as:

p ¼ Nv=Nð Þ � 100% ð6Þ

where Nv is the total number of pixels classified as green

vegetation, and N is the total number of pixels in the subset

image. Thus, p is the approximation of the actual fc within

the 3�3 window surrounding each sampled ETM+ pixel.

The average NDVI value was extracted for each window

from the ETM+ image, and linear regression model was

used to model the relationship between actual fc and NDVI

for the sample pixels:

fc ¼ b0 þ b1 � NDVIþ error ð7Þ

where b0 is the intercept, and b1 is the slope of the

regression model. The linear regression model was used to

estimate fc for each pixel in the ETM+ image.

5.3. NDVI–SMA model

Deardorff (1978) expressed heat and moisture coeffi-

cients as linear functions of fractional vegetation cover. The

general form of the linear relation is written as:

/ ¼ 1� rð Þ � /r¼0 þ r � /r¼1 ð8Þ

where / is the heat or moisture coefficient, /r=1 and /r=0

are contributions from vegetated ground and bare soil,

respectively, and r is fractional vegetation cover. Wittich
and Hansing (1995) applied this general formulation to

NDVI for the approximation of fc:

NDVI ¼ fc � NDVIveg þ 1� fcð Þ � NDVIsoil ð9Þ

which can be rewritten as:

fc ¼ NDVI� NDVIsoilð Þ= NDVIveg � NDVIsoil
� �

: ð10Þ

The NDVI value of the pixel has no subscript. NDVIveg
is the NDVI value of a pure green vegetation pixel, and

NDVIsoil is the NDVI value of bare soil. We used the

inversion of NDVI-regression to estimate NDVIveg and

NDVIsoil by assuming that Green Vegetation and Bare Soil

have 100% and 0% vegetation, respectively. NDVI–SMA

was then used to estimate vegetation fraction for each pixel

in the ETM+ image.

NDVI–SMA is based on the assumption that the NDVI

value of a given pixel is the linear combination of NDVI

values of green vegetation and bare soil, weighted by their

relative proportions. We examined the relationship between

original NDVI values and NDVImixed in order to assess the

validity of this assumption. The NDVImixed value of a given

ETM+ pixel is calculated as:

NDVImixed ¼ Fc � NDVIveg þ 1� Fcð Þ � NDVIsoil ð11Þ

where Fc and (1�Fc) are the actual fractions of green

vegetation and bare soil within the pixel, respectively.

5.4. Five-endmember SMA model

The number of endmembers used in SMA is constrained

by the dimensionality of the satellite image that is used

(Theseira et al., 2002). For example, for our study area, the

correlation coefficients among the three visible bands of the



Fig. 3. ETM+-based spectral signatures of the six selected endmembers.

The individual symbols represent NDVI values of endmembers: diamond

(Green Vegetation I), circle (Green Vegetation II), plus sign (NPV),

triangle-upward (Dark Soil), and square (Light Soil).

J. Xiao, A. Moody / Remote Sensing of Environment 98 (2005) 237–250242
Landsat ETM+ data were 0.98 (band 1 and band 2), 0.94

(band 1 and band 3), and 0.98 (band 2 and band 3),

illustrating that the dimensionality of these data is not as

high as suggested by the spectral resolution. Thus, a

maximum of four endmembers is usually used in SMA

models using Landsat data (e.g., Adams et al., 1995; Elmore

et al., 2000; Wu & Murray, 2003). However, four

endmembers may be inadequate to characterize spectrally

complex and heterogeneous landscapes.

NDVI captures the contrast between the visible-red and

near-infrared reflectance of vegetation canopies, and is

defined as:

NDVI ¼ NIR� REDð Þ= NIRþ REDð Þ ð12Þ

where NIR and RED are the visible-red (0.58–0.68 Am) and

near-infrared (0.725–1.1 Am) wavelength regions, respec-

tively. NDVI is strongly related to the fraction of photo-

synthetically active radiation (fPAR), and hence is closely

associated with vegetation activity or greenness (e.g., Asrar

et al., 1984; Myneni et al., 1995). In our study region, NDVI

is moderately correlated with the red band (R2=0.40), and

only weakly related to the NIR band (R2=0.06). Thus, there

is no doubt that, as a nonlinear combination of red and NIR,

NDVI provides new information that is linearly independent

of the original red and NIR bands.

Including NDVI along with the six reflective bands

resulted in a seven-band ETM+ image, which extended the

dimensionality of the ETM+ data and allowed the use of

five endmembers in a single SMA model. A five-endmem-

ber SMA model (SMA5) may lead to improved estimation

of endmember fractions because the spectral variability of

the study region can be better captured by using one more

endmember in the unmixing analysis.

5.5. Endmember selection

For SMA3, SMA4, and SMA5 models, we derived

endmember spectra from the ETM+ image. Six endmembers

were selected, including Green Vegetation I, Green Vegeta-

tion II, NPV, Dark Soil, Light Soil, and Shade. The two-

dimensional feature space plot between the red and NIR

bands (Peterson & Stow, 2003) was used for the selection of

endmembers. The upper-left apex of the feature space

represents pure green vegetation in urban areas and riparian

areas, including green grass and croplands. The upper-right

apex is characterized by dry salt lakes with high reflectance

values, which are not representative of the spectral

signatures of soils in the study region. Thus, only green

vegetation (Green Vegetation I) and Shade endmembers

were selected from the feature space. Natural vegetation

including coniferous forest and juniper savanna exhibited

lower reflectance than riparian grass. Thus, another green

vegetation endmember (Green Vegetation II) was selected

from pure pixels that were identified from the ETM+ image

with high-resolution orthoimagery. Other endmembers

including NPV, Dark Soil, and Light Soil were also selected
from pure pixels with reference to the orthoimagery. The

spectral signatures of all selected endmembers are shown in

Fig. 3.

With a total of six endmembers considered, there were 20

possible three-endmember combinations for SMA3 models,

15 possible four-endmember combinations for SMA4

models, and 6 possible five-endmember combinations for

SMA5 models. For each model, all endmember combina-

tions were explored, and the best endmember configuration

as determined through visual interpretation of both RMSE

and vegetation fraction maps was adopted for the model.

Unlike these models, NDVI–SMA has two fixed

endmembers: green vegetation and bare soil. The NDVI

values of these two endmembers (NDVIveg and NDVIsoil)

were derived from the inversion of the NDVI-regression

model (Eq. (7)) by assuming they had 100% and 0% green

vegetation, respectively.

5.6. Validation

A total of 170 pixels were randomly selected from the

ETM+ image for model validation. These sample pixels

were spatially independent from those pixels used as

training data for the development of NDVI-regression. A

3�3 window was used to account for coregistration errors

between the ETM+ image and the orthoimagery. The high-

resolution orthoimagery was used to estimate the actual fc
for the 3�3 window surrounding each sampled ETM+

pixel (see NDVI-regression method above). The resulting

actual vegetation fractions of these sample ETM+ pixels

were then compared with their predicted vegetation frac-

tions for evaluation of each model. Coefficients of

determination (R2) and overall RMSE were both used to

assess the accuracy of each method.

Narrowly distributed surface types including both NPV-

dominated areas and sparsely vegetated areas with light soil



Table 1

R2 and RMSE values between actual vegetation fraction and vegetation

fraction predicted from each method

SMA3 SMA4 NDVI SMA5

U C U C NDVI- NDVI– U C
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background were not well represented by the validation data

as developed above. Thus, orthoimagery subsets and/or

classified imagery were used to evaluate the accuracy of the

different methods for estimating fc for these narrowly

distributed areas.

regression SMA

R2 0.71 0.89 0.72 0.85 0.87 0.88 0.88 0.86

RMSE 0.159 0.099 0.150 0.123 0.105 0.106 0.100 0.118

All the linear relationships for the validation are statistically significant at

p <0.0001.Unconstrained is denoted as U, and constrained is denoted as C.
6. Results

The best SMA3 model was based on endmembers for

Green Vegetation II, Dark Soil, and Light Soil. The

unconstrained SMA3 model estimated fc relatively well

for less densely vegetated pixels (cover <40%) but sub-
Fig. 4. Relationship between actual and predicted fractional green

vegetation cover ( fc): (a) unconstrained SMA3; (b) constrained SMA3;

(c) unconstrained SMA4; (d) constrained SMA4; (e) NDVI-regression; (f)

NDVI–SMA; (g) unconstrained SMA5; (h) constrained SMA5. The solid

line is the 1 :1 line.
stantially underestimated cover for densely vegetated pixels

(cover >60%) (Fig. 4(a)). In contrast, the constrained model

estimated fc well for the full range of vegetation cover (Fig.

4(b)) thus producing higher accuracy than its unconstrained

counterpart (Table 1). For NPV-dominated areas, however,

both models substantially overestimated fc although the

constrained model still performed better than its uncon-

strained counterpart (Fig. 5). The overestimation of fc in

NPV-dominated areas was most likely because NPV was not

included as an endmember in these models. Note that,

although the spectra for Dark Soil and NPV were very

similar (Fig. 3), the reflectance of NPV increased from the

red to NIR wavelength, while the reflectance of Dark Soil

decreased.

The best SMA4 model included endmembers for Green

Vegetation II, NPV, Dark Soil, and Light Soil. As with

SMA3, the unconstrained SMA4 model strongly under-

estimated fc when canopy cover exceeded about 40%, and

the constrained version worked well across the range of

fractions (Fig. 4(c), (d)). Note that the unconstrained SMA4

had slightly better accuracy than the unconstrained SMA3

model, and the constrained version performed as well as the

SMA3. In NPV-dominated areas, however, both SMA4

models predicted fc reasonably well (Fig. 5) likely because

of the inclusion of the NPV endmember in these models.-

There was a strong, linear relation between actual fc and

NDVI (R2=0.89, p <0.0001). The linear regression model

was written as:

fc ¼ 0:114þ 1:284� NDVI: ð13Þ

The model was used to estimate fc for each pixel in the

ETM+ image. Predicted values of fc, produced using the

NDVI-regression method, also had a strong, linear

relationship to actual vegetation fraction for the validation

ETM+ pixels (Fig. 4(e)). The accuracy of the model was

significantly higher than that of unconstrained SMA3 and

SMA4 models, and comparable to that of constrained

SMA3 and SMA4 models (Table 1). However, this

method substantially overestimated fc in NPV-dominated

areas (Fig. 5) and sparsely vegetated or barren areas

dominated by Light Soil (Fig. 6) because NPV and Light

Soil both have slightly higher NDVI values than Dark

Soil, which is the dominant background soil type across

the region.



Fig. 5. Fractional green vegetation cover ( fc) and high-resolution orthoimagery for the NPV-dominated area delineated by the green rectangle in Fig. 1. (1)

Predicted fc: (a) unconstrained SMA3; (b) constrained SMA3; (c) unconstrained SMA4; (d) constrained SMA4; (e) NDVI-regression; (f) NDVI–SMA; (g)

unconstrained SMA5; (h) constrained SMA5. Green polygons indicate NPV-dominated areas. (2) The high-resolution orthoimagery subset and the classified

orthoimagery subset corresponding to the area delineated by the red rectangle in (1). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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NDVIveg and NDVIsoil were estimated at 0.637 and

-0.054, respectively, by inversion of NDVI-regression

(Fig. 7). Based on these values, NDVI–SMA was used to

estimate fc for each pixel in the ETM+ image. The relationship

between actual fc and estimated cover (Fig. 4(f)) was similar to

that of NDVI-regression (Fig. 4(e)). Likewise, NDVI–SMA
had significantly higher accuracy than the unconstrained

SMA3 and SMA4 models, and comparable accuracy to the

constrained SMA3 and SMA4 models (Table 1, Fig. 4). As

with NDVI-regression, NDVI–SMA also substantially over-

estimated fc in NPV-dominated areas (Fig. 5) and sparsely-

vegetated or barren areas with Light Soil background.



Fig. 6. NDVI values and fractional green vegetation cover ( fc) of the Landsat ETM+ subset for a sparsely-vegetated or barren area delineated by the blue

rectangle in Fig. 1: (a) NDVI; (b) fc predicted from the NDVI-regression method.
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NDVI–SMA is based on the assumption that the NDVI

value of a given pixel is the linear combination of NDVI

values of green vegetation and bare soil. The strong, linear

relation observed between NDVImixed and original NDVI
Fig. 7. Relationship between NDVI and actual fractional green vegetation

cover ( fc) and estimation of NDVIveg and NDVIsoil (NDVIveg=0.6367,

NDVIsoil=�0.0543).
values (Fig. 8) shows that the linearity assumption is valid

for this particular area. Thus, NDVI can be used for linear

SMA in our study region. By contrast, Lobell and Asner

(2004) suggested that the relation between NDVI and
Fig. 8. Relationship between mixed NDVI (NDVImixed) and actual NDVI

(NDVIactual) values demonstrating the validity of the linearity assumption

underlying the NDVI–SMA model (NDVIactual=0.028+0.978�NDVImixed;

R2=0.88, p<0.0001).
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endmember fractions is not linear and thus NDVI cannot be

used in linear SMA.

NDVI–SMA and NDVI-regression had similar accuracy

for estimating fc because of their mathematical similarity.

NDVI–SMA (Eq. (10)) can be rewritten as:

fc ¼ 1= NDVIveg � NDVIsoil
� �� �

� NDVI

� NDVIsoil= NDVIveg � NDVIsoil
� �

: ð13Þ

For an established NDVI–SMA model, 1 / (NDVIveg�
NDVIsoil) and NDVIsoil / (NDVIveg�NDVIsoil) are con-

stants. As with NDVI-regression, NDVI–SMA is also

based on a linear relation between fc and NDVI (Qi et al.,

2000; Wittich & Hansing, 1995; Zeng et al., 2000). Thus,

the only difference between these two models is that the

coefficients are derived in different ways.

The best SMA5 models included endmembers for Green

Vegetation I, Green Vegetation II, NPV, Dark Soil, and Light

Soil. The accuracy of both constrained and unconstrained

SMA5 models for estimating fc were comparable to that of

constrained SMA3 and SMA4, and significantly higher than

that of unconstrained SMA3 and SMA4 (Table 1, Fig. 4).

Both SMA5 models predicted fc well for the full range of

vegetation cover, and the two models produced almost

identical accuracy. As with SMA4, SMA5 models predicted

fc well for NPV-dominated areas (Fig. 5) due the inclusion

of the NPV endmember in the models.

The overall accuracy of the SMA5 models was not

significantly different than the SMA4 constrained model.

This is because the additional endmember (Green Vegeta-

tion I) in the SMA5 model represented vegetation that was
Fig. 9. Actual and predicted fractional green vegetation cover ( fc) for riparian veg

high-resolution orthoimagery; (b) unconstrained SMA3; (c) unconstrained SMA4;

constrained SMA4; (h) constrained SMA5. (b)– (h) is fractional green vegetation
only narrowly distributed in riparian areas. Despite the lack

of improvement in overall accuracy, the constrained SMA5

model more accurately estimated fc in riparian areas than the

other models (Fig. 9). All other methods overestimated fc in

riparian areas (Fig. 9). This suggests that green woody

vegetation and green grass cover should be represented two

different endmembers because they are spectrally different,

particularly in the NIR wavelength (Fig. 3).
7. Discussion

The study area is a spatially heterogeneous, arid to semi-

arid environment, with strong topographically driven

gradients in temperature, moisture, and productivity. Spatial

variability in land-surface characteristics, and thus reflec-

tance properties, is also produced by the patchy distribution

of soil types and vegetation communities. In our results,

constrained SMA3 and SMA4 models were substantially

more accurate for estimating fc than their unconstrained

counterparts, suggesting that three or four endmembers are

not sufficient to account for the spectral variability in the

study environment. Constrained and unconstrained SMA

models can produce different endmember fractions when

too few or too many spectral endmembers are used (Sabol et

al., 1992) because the unity constraint, when employed,

forces the sum of all endmember fractions to approach

100%. The accuracy of the two SMA5 models did not differ,

suggesting that, in our study system, five endmembers are

adequate to spectrally characterize the non-urban land-

scapes. In addition, although constrained SMA3, con-
etation delineated by the red rectangle in Fig. 1: (a) actual fc derived from

(d) unconstrained SMA5; (e) NDVI-regression; (f) constrained SMA3; (g)

cover ( fc) estimated from each method.
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strained SMA4, and SMA5 models performed well over the

study region, substantial differences in model performance

were evident in the less common landscape types within the

region. The constrained five endmember model better

estimated fc across the range of landscape types present.

In other landscapes, for example urban areas, three

endmembers have been found sufficient to account for

spectral variability (Small, 2001).

The relationship between NDVI and fc was nearly linear

for our study area. This result was consistent with many

studies (Hirano et al., 2004; Hurcom & Harrison, 1998;

Shimabukuro et al., 1997; Wittich & Hansing, 1995), but

inconsistent with strongly nonlinear relationships shown in

others (Carlson & Ripley, 1997; Choudhury et al., 1994;

Dymond et al., 1992; Gillies & Carlson, 1995; Lobell &

Asner, 2004; Purevdorj et al., 1998). This implies that the

range of fc represented within the study region is below the

level at which NDVI saturates in its response to leaf area

index (LAI) (Carlson & Ripley, 1997) which may correlate

with vegetation cover at the ETM+ pixel scale. Our results

imply that the response of NDVI to vegetation cover in

similar ecosystems, and at similar phenological stages, may

also be linear. Note that the Landsat ETM+ image used in

the study was acquired in early spring. Since the LAI values

of coniferous forest will increase from spring through

summer, the relation between NDVI and fc may become

nonlinear as the growing season progresses.

Elvidge and Lyon (1985) and Huete et al. (1985) found

that greenness measures of vegetation canopies were

significantly affected by soil background reflectance. Like-

wise, Garcı́a-Haro et al. (1996) and Elmore et al. (2000)

found that spectral mixture modeling was less sensitive to

background soil reflectance than the NDVI-regression

method. These affects were evident in our results, where

we found that the NDVI-based methods were sensitive to

the slightly higher NDVI values for Light Soil and NPV,

relative to Dark Soil. As a result, fc was overestimated in

NPV-dominated areas and in sparsely vegetated areas with

light soil background. For other areas, however, both NDVI-

based methods provided good estimates of fc.

There are several sources of uncertainty inherent in the

methods compared in this analysis. First, nonlinear mixing of

reflectance from sparse vegetation canopies and soil back-

ground influences the spectral observation of plants in semi-

arid regions (Borel & Gerstl, 1994; Huete, 1986; Huete et al.,

1985), which may impose limits on the utility of linear SMA

for estimating fractional vegetation cover (Ray & Murray,

1996). Errors caused by nonlinear mixing may be minimized

by nonlinear SMA models (Ju et al., 2003), artificial neural

networks (Atkinson et al., 1997; Pu et al., 2003), or regression

trees (DeFries et al., 1997; Yang et al., 2003).

Second, within-endmember variability in spectral signa-

tures was assumed to be negligible, but this may not be the

case. For example, Bateson et al. (2000) showed that

variability in the structural and biochemical attributes of

vegetation may reduce the accuracy of vegetation cover
fractions from SMA. Likewise, NDVI values may vary

depending on water limitation (e.g., Sandholt et al., 2002),

which could lead to underestimation of fc from both NDVI-

based methods.

Third, the endmember pixels used for model develop-

ment were not truly pure, in the sense that a small amount of

shadow or soil background may have been included in

Green Vegetation I, Green Vegetation II, and NPV. This is

an unavoidable consequence of using image endmembers.

For the NDVI–SMA model, additional sources of uncer-

tainty relate to the sample-based estimation of NDVI

endmember values for 0% and 100% fc (i. e. NDVIsoi and

NDVIveg) by inversion of a linear regression model.

Although our study region does not constitute a

representative sample of the range of environments within

the southwestern US, it is typical of much of the southwest

in that it encompasses gradients among desert and semi-

desert shrublands, riparian areas, and woodlands and forests

of the southwestern uplands. As in much of the US

southwest, the study region also includes spatial hetero-

geneity in vegetation form and density, and in soil

background reflectance. The results of our work thus have

several implications for mapping of fc within regional-scale

study areas in the US southwest.

First, NDVI-based methods for estimating fc may be

sufficient for relatively simple landscapes where there is

little spectral variability within the photosynthetic and non-

photosynthetic components of the surface, and where the

relationship between NDVI and fractional cover is approx-

imately linear. This implies that, within a region such as

ours, improved estimates of fractional cover could be

achieved by stratifying the landscape into several units

prior to the development and application of separate NDVI-

based models.

Second, green woody vegetation and green grass cover

should be spectrally represented by two different endmem-

bers because these two vegetation types are spectrally

different, particularly in the NIR wavelength. The use of a

single vegetation endmember can lead to either over- or

under-estimation of fc if both vegetation types are present.

Specifically, fc would be overestimated for green grass

cover if the endmember were extracted from green woody

vegetation; fc would be underestimated for green woody

cover if the endmember were extracted from green grass.

Third, larger study areas within the southwestern US may

be too spectrally variable to properly characterize using only

3 or 4 endmembers. Our results suggest that 5 endmembers

are more appropriate for the study area, and that NDVI can

be incorporated into the Landsat ETM+ dataset to provide

enough dimensionality to support the addition of a fifth

endmember.

We also note that although SMA5 models had higher

accuracy for estimating fc in less common landscapes

(NPV, riparian vegetation) than SMA3 and SMA4 models,

the accuracy of constrained SMA3 model and constrained

SMA4 model was comparable to that of SMA5 models in
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other landscapes. This suggests that heterogeneous land-

scapes can be stratified into relatively homogeneous strata,

and a spectral mixture model can be applied to each

stratum separately. For each stratum, three or four

endmembers may be adequate to characterize the spectral

variability within the stratum. For example, Coca et al.

(2004) developed the variable endmember SMA (VESMA)

technique, which stratifies the study region and selects an

appropriate model for each stratum. Incorporating the

capacity for five endmembers with this technique may

provide additional improvement in estimates of fc. Another

relatively new technique, the multiple-endmember SMA

model (MESMA) (Roberts et al., 1998), may also be able

to better capture the spatial variability in surface reflec-

tance in heterogeneous landscapes than three- or four-

endmember mixture models.
8. Conclusions

Our results suggest that simple methods for estimating

fractional green vegetation cover from NDVI are suitable

for some landscapes in arid and semi-arid regions. However,

NDVI-based methods are sensitive to soil background

reflectance. In sparsely vegetated areas, NDVI-based

methods are affected by non-photosynthetically active scene

components (e.g. substrate or senescent vegetation) that

produce high NDVI values. In these cases, fractional green

vegetation cover is typically overestimated.

Model limitations within certain landscape types, and

comparison of constrained vs. unconstrained models,

suggested that the most effective approach for estimating

fractional green vegetation cover within this region should

be based on five endmembers. Three or four endmembers

may be inadequate to spectrally characterize large, hetero-

geneous landscapes. We found that, by using NDVI as an

additional data dimension along with the reflectance bands

of ETM+ data, a five-endmember model performed as well

as any other model, and better estimated fractional green

vegetation cover in riparian areas due to the inclusion of the

fifth endmember.

We also note that constrained SMA3 model, constrained

SMA4 model, and both SMA5 models all produced

comparable overall (i. e. region-wide) accuracies in our

study region although SMA5 models had higher accuracy in

less common landscapes (NPV, riparian vegetation). This

indicates that heterogeneous landscapes can be stratified

into relatively homogeneous strata, and a spectral mixture

model can be applied to each stratum separately. For each

stratum, three or four endmembers may be adequate to

characterize the spectral variability within the stratum. The

use of five or more endmembers within each stratum may

further improve the representation of the spectral variability

of land-cover types within the stratum and thus potentially

improve the accuracy for estimating fractional green

vegetation cover.
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