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Abstract Net primary production (NPP) of terrestrial ecosystems provides food, fiber,
construction materials, and energy to humans. Its demand is likely to increase substantially
in this century due to rising population and biofuel uses. Assessing national forest NPP is of
importance to best use forest resources in China. To date, most estimates of NPP are based
on process-based ecosystem modeling, forestry inventory, and satellite observations. There
are little efforts in using spatial statistical approaches while large datasets of in-situ
observed NPP are available for Chinese forest ecosystems. Here we use the surveyed forest
NPP and ecological data at 1,266 sites, the data of satellite forest coverage, and the
information of climate and topography to estimate Chinese forest NPP and their associated
uncertainties with two geospatial statistical approaches. We estimate that the Chinese forest
and woodland ecosystems have total NPP of 1,325±102 and 1,258±186 Tg C year−1 in
1.57 million km2 forests with a regression method and a kriging method, respectively.
These estimates are higher than the satellite-based estimate of 1,034 Tg C year−1 and almost
double the estimate of 778 Tg C year−1 using a process-based terrestrial ecosystem model.
Cross-validation suggests that the estimates with the kriging method are more accurate. Our
developed geospatial statistical models could be alternative tools to provide national-level
NPP estimates to better use Chinese forest resources.
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1 Introduction

Net primary production (NPP) is the net amount of carbon captured by land plants through
photosynthesis during a certain time period. It determines the amount of energy available
for transfer from plants to other levels in the trophic webs in ecosystems (Haberl et al.
2007). It is of fundamental importance to human kind because the largest portion of our
food supply is from productivity of plant life on land, as is wood for construction and fuel
(Melillo et al. 1993). Moreover, it has also been contemplated as biofuel sources in recent
years around the world (e.g., Obersteiner et al. 2006). Its demand is likely to increase
substantially in next few decades due to rising population and increase of biofuel
consumption (Imhoff and Bounoua 2006). The increasing demand on NPP presents a great
challenge to human society because of the limited arable land on earth and the adverse
effects of changing climate on NPP.

China has the third largest land areas in the world, next only to Russia and Canada, but
has a quarter of the world population. Specifically, China’s human population has increased
about 2.5 times over the past 50 years, yet the human population in forested areas has
increased five fold (Zhang et al. 1999). The fast economic development and population
rising unavoidably increase the demand of NPP of terrestrial ecosystems. For example, the
East Asia harvests 685 million m3 wood per year, where China is the dominant country
with respect to human population and land areas (Haberl et al. 2007).

At the present, China has approximately 1.31 million km2 forests and woodlands
including bamboo (e.g., Pan et al. 2004). These forest ecosystems not only play an
important role in the fast economic development, which supplies high timber demand, but
also offset a large amount of fossil fuel carbon dioxide emissions in the country because of
plant photosynthesis. Assessing Chinese forest NPP supply is an important step to best use
Chinese forest resources and evaluate the role of forests in the global carbon cycle. To date,
most existing studies focus on quantifying NPP at site-levels. For example, Ni et al. (2001)
used site-level information to examine the individual site-based NPP and the correlation
between climate factors and NPP and did not extrapolate their site-level results to national
level. Although Luo (1996) made a preliminary attempt to extrapolate the site-level
information to the Tibetan Plateau region, he has not yet estimated total NPP for the region
or China as a whole. To our knowledge, the national estimates of NPP have mostly been
provided using process-based terrestrial ecosystem modeling approaches to date (e.g., Xiao
et al. 1998; Pan et al. 2001; Cao et al. 2003; Jiang et al. 1999; Ni 2003; Piao et al. 2005a).
Geospatial statistical approaches appear as a powerful way to quantify Chinese forest NPP
(e.g., Wang et al. 2005). In addition, combining satellite data and forest inventory data have
also made a good progress in quantifying Chinese biomass and NPP in recent years (e.g.,
Fang et al. 1998, 2001, 2003; Feng et al. 2007; Piao et al. 2005b). There are little efforts in
using spatial statistical approaches while large datasets of in-situ observed NPP are
available for Chinese forest ecosystems.

Here, we make an attempt to use the surveyed NPP and satellite derived land-cover data
with two geospatial statistical approaches, which have not been used to date, to estimate
national forest NPP. Specifically, the two methods are a multiple linear regression method
and a kriging method to derive spatially-explicit estimates of NPP at an 8 km×8 km
resolution (Diggle et al. 1998; Cressie 1993). The data of surveyed NPP and associated
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ecological, geographical, and climatic factors were developed by Luo (1996). Next, we use
a process-based Terrestrial Ecosystem Model (TEM; Zhuang et al. 2003) and the satellite-
based forest distribution to estimate national NPP for Chinese forest ecosystems at a spatial
resolution of 8 km×8 km. We then compare the NPP estimates of spatial patterns and their
magnitudes of these approaches. To check our results, the MODIS-based NPP is compared
with our estimates (Running et al. 2004). To better understand the NPP distribution in
China, we further analyze the spatial patterns and magnitudes of NPP for different forest
ecosystem types and sub-regions across China.

2 Method

To implement these statistical approaches, we first organize both site-level and spatially-
explicit information on vegetation, soils, and climate for representative forest ecosystems
across China (Luo 1996). To verify these estimates, we apply a process-based
biogeochemistry model, the Terrestrial Ecosystem Model at an 8 km×8 km resolution for
whole Chinese forest ecosystems to simulate NPP (TEM; Zhuang et al. 2003). We then
compare our estimates with both process-based and geospatial statistical approaches to the
satellite-based NPP (Running et al. 2004). Below we first detail how we implement these
two spatial statistical approaches. Second, we describe how we conduct the TEM
simulations. Finally, we describe how we compare these estimates.

First, to develop spatial statistical estimates, we organize the ecological data of forest
and woodlands for 1,266 sites compiled from the continuous forest-inventory plots in China
during 1970–1994 (Luo 1996). For each site, we obtain the information of its ecosystem
type, location [longitude (Lo) and latitude (La)], elevation (E), annual average monthly air
temperature (T) and precipitation (P), total plant NPP (TNPP), aboveground (ANPP), and
belowground NPP (BNPP). These NPP data were obtained using biomass measurements
and allometric regression equations for 98 tree species, 4,507 continuous forest-inventory
plots with measurements of tree height and diameter breast height (DBH), and 1,616 stem
samples from 180 tree species (Fig. 1). With these site-level data, we develop a linear
regression model for each forest ecosystem type. The dependent variables include TNPP,
ANPP, and BNPP. The independent variables include elevation, longitude, latitude, annual
air temperature, annual precipitation, and vegetation type for the site. To extrapolate the site
information to national level, we classify these NPP sites into six broad ecosystem
categories comprised of (1) evergreen needleleaved forests; (2) evergreen broadleaf forests;
(3) deciduous needleleaved forests; (4) deciduous broadleaf forests; (5) mixed forests; and
(6) woody savannas. These broad classifications are based on the International Geosphere–
Biosphere Programme (IGBP) classification system, which is widely used in empirical and
modeling studies at regional, continental, or global scales. We therefore reclassified the
forest types in Luo’s forest inventory database to the six IGBP forest classes (Table 1). We
thus totally obtain 18 linear regression models for three dependent variables and six
ecosystem types with this method (see Table 2).

The regression method uses the following model to estimate NPP:

NPPj ¼ mk þ b1T þ b2T
2 þ b3P þ b4E þ b5LO þ b6La þ b7E � LO þ " ð1Þ

where NPPj represents the total TNPP, ANPP, or BNPP with j=1,2,3, respectively, μk
indicates the intercept term for vegetation type k (k=1, …,6) and ɛ is an error term assumed
identically and independently and normally distributed (Table 3). To obtain the coefficients
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of Eq. 1 for each vegetation type, we conduct regression between the surveyed NPP and
their independent variables of annual mean temperature, precipitation, elevation, longitude,
and latitude. In addition, we also include the interactive term of elevation and longitude,
which represents the elevational and longitudinal gradient from east to west in China. The
p-values of the test for spatial dependence are all less than 0.0001 for TNPP, ANPP, and
BNPP, respectively, which imply that dependent variables are all spatially dependent. The
R2 values of the regression models for TNPP, ANPP, and BNPP are 0.57, 0.36, and 0.57,
respectively (Table 2).

Next, we extrapolate these linear regression models to Chinese forest ecosystems at a
spatial resolution of 8 km×8 km using the spatially-explicit information on climate,
vegetation type, elevation, and location. The spatially-explicit annual average temperature
and precipitation for the 1990s are obtained from studies of Mitchell and Jones (2005). The
data is similar to the climate data used in a mechanistic model application for Chinese forest
NPP study (Ni 2003). The forest type map is derived from the International Geosphere–
Biosphere Program (IGBP) Data and Information System (DIS) DISCover Database

Fig. 1 The sample sites used in multiple regression and kriging methods across China. Sub-regions include
Northern China (N); Northeastern China (NE); Northwestern China (NW); Central China (C); Eastern China
(E); Southwestern China (SW); Southern China (S)

88 Mitig Adapt Strateg Glob Change (2009) 14:85–99



(Belward et al. 1999; Loveland et al. 2000). The 1 km elevation data are derived from the
Shuttle Radar Topography Mission (SRTM) (Farr et al. 2007). The 1 km×1 km DISCover
dataset is reclassified into our six broad ecosystem types and aggregated to 8 km×8 km
resolution. The climate and elevation data are also re-sampled to 8 km×8 km spatial
resolution.

The kriging method assumes that the error term ɛ (in Eq. 1) is spatially dependent with a
stationary correlation function. Here we take the popular Matérn correlation function
defined by ra;b hð Þ ¼ a

2v�1* vð Þ
h
b

� �v
kv

h
b

� �
when h>0 and >a,b (0)=1, where h is the distance

Table 2 Coefficients of multiple linear regression models derived from NPP data and their environmental
variables at field plots

mi b1 b2 b3 b4 b5 b6 b7 b8 R2

NPP m1 −1,387.1 18.2 0.59 0.31 0.49 7.35 14.19 −0.004 0.57
BNPP m2 −3,13.4 3.0 0.13 0.025 0.06 1.51 3.14 −0.004 0.36
ANPP m3 −1,073.7 15.2 0.46 0.28 0.43 5.84 11.04 −0.004 0.57

The dependent variables include TNPP, ANPP, and BNPP with units of gram C per square meter per year.
The independent variables include air temperature, precipitation, elevation, longitude, latitudes and
interactive terms of longitude and elevation.

Table 1 The IGBP land-cover classes and corresponding forest types in Luo’s forest inventory database
(Luo 1996)

IGBP classes Forest types in Luo’s database Definition (Belward and Loveland 1996)

Evergreen
needleleaved
forests

Boreal/alpine Picea-Abies forest, Boreal
Pinus sylvestris var. mongolica forest,
temperate Pinus tabulaeformis forest,
subtropical montane Pinus yunnanensis
and P. khasya forest, subtropical Pinus
massoniana forest, subtropical montane
Pinus armandii, P. taiwanensis and P.
densada forest, subtropical
Cunninghamia lanceolata forest,
subtropical montane Cupressus and
Sabina forest

Tree canopy cover >60% and tree height
>2 m. Most of the canopy is needle-
leaved and remains green all year.
Canopy is never without green foliage

Evergreen broadleaf
forests

Sclerophyllous evergreen Quercus forest Tree canopy cover >60% and tree height
>2 m. Most of the canopy is broad-
leaved and remains green all year.
Canopy is never without green foliage

Tropical rainforest and monsoon forest

Deciduous
needleleaved
forests

Boreal/temperate Larix forest Tree canopy cover >60% and tree height
>2 m. Most of the canopy is needle-
leaved and deciduous

Deciduous broadleaf
forests

Temperate typical deciduous broadleaved
forest

Tree canopy cover >60% and tree height
>2 m. Most of the canopy is broad-
leaved and deciduousTemperate/subtropical montane Populus–

Betula deciduous forest
Mixed forests Subtropical mixed evergreen-deciduous

broadleaved forest
Tree canopy cover >60% and tree height
>2 m. Mixed evergreen and deciduous
canopy

Woody savannas Desert riverside woodland Forest canopy cover between 30–60%
and height >2 m
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between two points, Γ is the gamma function and κv is the modified Bessel function
(Abramowitz and Stegun 1965). The parameter v is the smoothness parameter with a
larger value corresponding to a smoother field. The parameter b is a scale parameter with
a large value indicating a strong dependence and a small value indicating a weak
dependence. The parameter a is between 0 and 1 with value less than 1 indicating the
existence of nugget effect (Cressie 1993). Since the smoothness parameter v is hard to
estimate and its changes do not affect the kriging prediction values, we chose v as the
conventional value 1 in our study. Therefore, the correlation function has only two
unknown parameters a and b (Tables 4 and 5).

Based on the correlation function, the kriging method predicts the response value for any
unknown point in the study area using the minimum-mean-squared-prediction-error method
that has been frequently used in spatial prediction of a Gaussian stationary random field
(e.g., Cressie 1993). Here the kriging prediction of any pixel Yq Suð Þð Þ in the study area is
given by

Yq Suð Þ ¼ X t Suð Þb þ rq Suð ÞtR�1
q Y � Xbð Þ ð2Þ

with a variance estimation as

Vq Y Suð Þ Yjð Þ ¼ s2 1� rq Suð ÞtR�1
q rq Suð Þ� � ð3Þ

where X(S)=(1, x1(S), …, xp−1(S)) is the vector of independent variables at locations of
observations, b is the parameter vector of the independent variables, Rq is the correlation
matrix of observations, and rq Suð Þ is calculated as

rq Suð Þ ¼ rq Su � S1ð Þ; . . . ; rq Su � Snð Þð Þ: ð4Þ
Since we choose the Matérn correlation function, there are only two parameters

contained in the correlation matrix Rq as we can write θ=(a,b). Here, we estimate the
parameter θ by the profile likelihood method (Murphy and van der Vaart 2000). When the

Table 4 Coefficients of regression equations for the kriging method derived from plot NPP data and their
environmental variables

mi a b b1 b2 b3 b4 b5 b6 b7 b8 σ

NPP m1 0.2785 219.74 −649.1 28.2 0.69 −0.16 −0.69 19.43 0.15 0.0025 19.5
BNPP m2 0.429 55.63 −211.2 3.1 0.13 −0.015 0.94 2.6 0.01 −0.00002 0.68
ANPP m3 0.2732 234.8 −520.7 26.3 0.56 −0.17 −1.44 18.0 0.14 0.002 15.6

The dependent variables include TNPP, ANPP, and BNPP with units of gram C per square meter per year.
The independent variables include air temperature, precipitation, elevation, longitude, latitudes and
interactive terms of longitude and elevation.

m1 m2 m3

Evergreen needleleaved forests 0.0 0.0 0.0
Evergreen broadleaved forests 223.4 38.9 184.5
Deciduous needleleaved forests 147.6 12.3 145.3
Deciduous broadleaved forests 163.4 21.6 141.9
Mixed forests 75.8 27.9 47.9
Woody savannas 48.8 18.1 30.7

Table 3 Coefficient mi for
different forest ecosystems in
the multiple linear regression
method
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estimate of θ is derived, we estimate the other parameter using the generalized least square
method as

b ¼ X tR�1
q X

� ��1
X tR�1

q Y ð5Þ
and

s2 ¼ 1

n� p
Y tMqY ð6Þ

Where

Mq ¼ R�1
q � R�1

q X X tR�1
q X

� ��1
X tR�1

q ð7Þ
and Rq ¼ rq Si � Sj

�� ���� �
i;j¼1;...;n

is the correlation matrix of the observations, which is

assumed invertible for all θ in the parameter domain. The correlation function rq :ð Þ, a
spherical distance correlation (Stein 2005; Weber and Talkner 1993), is calculated by using
the maximum likelihood estimation method (Murphy and van der Vaart 2000). Y is the
vector of observations of dependent variables at locations S1 to Sn. Where n is the total
number of observation points, p is the dimension of independent variable which is 13 in our
study. The 1−a level confidence interval of the simple kriging prediction is also calculated
(Cressie 1993).

Similar to using the multiple linear regression approach, to calculate the spatially-
explicit forest ecosystem NPP in China, we use Eqs. 2 and 3 to calculate TNPP, ANPP, and
BNPP and their confidence intervals with the independent variables for each pixel at an
8 km×8 km resolution. Specifically, in developing regression models of NPP using Eq. 1,
we include all independent variables considered in our multiple linear regression method in
addition to the spherical correlation defined as rq :ð Þ. Thus, we obtain other eighteen
regression models with Eq. 1 for NPP, but with different values for ɛ. The intercepts and
coefficients of these models are presented in Tables 3 and 4. These regression models are
then extrapolated to whole Chinese forest ecosystems driven by spatially-explicit
independent variable data used in the linear regression method.

To evaluate our statistical estimates, we simulate NPP with a process-based biogeochem-
istry model, the Terrestrial Ecosystem Model (TEM; Zhuang et al. 2001, 2002, 2003) using
the spatially-explicit data of climate, vegetation, soil, and topography for whole Chinese
forest ecosystems. In TEM, at each monthly time step, NPP is calculated as the difference
between gross primary production (GPP) and plant autotrophic respiration (RA). Algorithms
of GPP and RA are described elsewhere (McGuire et al. 1992; Zhuang et al. 2003). The
version of TEM used here is different from the ones used in Pan et al. (2001) and Xiao et al.
(1998) for quantifying Chinese terrestrial ecosystem carbon dynamics. The earlier version
of TEM is an equilibrium model, which is driven with a long-term average climate; while

m1 m2 m3

Evergreen needleleaved forests 0.0 0.0 0.0
Evergreen broadleaved forests 235 45.9 189.1
Deciduous needleleaved forests 130 11.2 118.6
Deciduous broadleaved forests 176.3 24.0 151.7
Mixed forests 75.4 33.3 43.3
Woody savannas −277.9 −0.87 −274.1

Table 5 Coefficient mi for
different forest ecosystems
in the kriging method
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the current TEM uses transient climate data and is incorporated with the effects of soil
thermal dynamics on carbon and nitrogen dynamics.

To run TEM, we organize the data of atmosphere, vegetation, soil texture, and elevation
at an 8 km×8 km resolution from 1901 to 2002. Specifically, the monthly air temperature,
precipitation, and cloudiness are based on data developed by Climate Research Unit (CRU)
at United Kingdom (Mitchell and Jones 2005). These data are re-sampled to 8 km×8 km
spatial resolution from original 0.5°×0.5° resolution. We use the annual atmospheric CO2

data for the period of 1901 to 2002 from our previous studies (Zhuang et al. 2003). The
developed data of vegetation, soil texture, and elevation at resolution of 8 km×8 km are
also used to drive TEM. The model parameters of the simulation are documented elsewhere
(Zhuang et al. 2003). During the simulation, we first run TEM to equilibrium for an
undisturbed ecosystem using the long-term averaged monthly climate and CO2 concen-
trations from 1901 to 2002 for each grid cell. We then spin up the model for 120 years with
the climate from 1901 to 1940 to account for the influence of climate inter-annual
variability on the initial conditions of the undisturbed ecosystem. We then run the model
with transient monthly climate data from 1901 to 2002. The simulated NPP during the
1990s is compared to our spatial statistical estimates.

To examine if our statistical and process-based estimates are reasonable, we also
compare our results with the satellite-based NPP from the Net Primary Production Yearly
L4 Global 1 km product derived from MODIS (MODerate Resolution Imaging
Spectroradiometer) (Running et al. 2004). The satellite NPP is simply computed as gross
primary production (GPP) minus maintenance respiration of leaves and fine roots and
annual growth respiration. The satellite GPP is calculated as the fraction of photosynthet-
ically active radiation absorbed by vegetation canopies, derived from a spectral vegetation
index, multiplied by incident radiation and the conversion efficiency. We use the satellite
NPP data from 2001 to 2003 to get annual average values for each pixel. We also aggregate
the pixel-level NPP of forest ecosystems for each sub-region and major ecosystem types in
China for comparison studies.

3 Results and discussion

Our multiple linear regression method estimates that the Chinese forest ecosystems have
1,325±102, 1,158±91, and 167±19 Tg C year−1 for TNPP, ANPP, and BNPP, respectively, in
total 1.57 million km2 forested areas (Table 5). The largest NPP regions include Southwestern
China and Eastern China, accounting for more than 50% of the total NPP. On a per unit area
basis, the simulated TNPP increases from 537 in Northern China to 1,121 g C m−2 year−1 in
Southern China with national average of 843 g C m−2 year−1. Aboveground NPP accounts for
87% of total NPP. For different forest ecosystems, the evergreen broadleaf forests have a total
79 Tg C year−1 in 0.17 million km2 areas while mixed forests account for more than 55% of
the total NPP. Woody savannas occupy the second largest forest areas and have total NPP of
333 Tg C year−1. The TNPP, ANPP, and BNPP of kriging estimates are slightly lower, but
their standard deviations are higher than the regression method (Table 6). Overall, the kriging
method estimates the Chinese forests have 1,258±186 Tg C year−1.

The estimates of TNPP with two geospatial statistical approaches are comparable to
satellite-based estimates (1,035 Tg year−1) for the 1990s (Table 6). But the national forest
TNPP is higher than TEM simulation of 778 Tg C year−1 in 1.2 million km2 forested areas.
Using an ecosystem model, Cao et al. (2003) estimated that the Chinese terrestrial ecosystems
NPP is between 2,860 and 3,370 Tg C year−1 during the period of 1981–2000. In their study,
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they did not specifically provide the total estimates for forest ecosystems, but estimating NPP
of 1,200 g C m−2 year−1 for the evergreen broadleaf forest, which is much higher than our
estimates ranging from 429 to 462 g C m−2 year−1 with our geostatistical methods (Table 6).
This may suggest that their total NPP estimates for forest ecosystems tend to be high. Xiao
et al. (1998) estimated that the NPP for evergreen broadleaf forest is 890 g C m−2 year−1,
which is between our estimates and ones by Cao et al. (2003). In another model study, Pan
et al. (2001) estimated that temperate deciduous forests, temperate broadleaved evergreen
forests and tropical evergreen forests combined have a potential NPP of 2,530 Tg C year−1,
which puts their values to the upper end of all existing estimates.

Our spatially-explicit estimates of national forest NPP present a similar spatial pattern with
other approaches (Fig. 2). Specifically, there is a north–south gradient of NPP since the
temperature and precipitation tend to increase from north to south and there are more
productive forests towards the south. All estimates for northern China have a similar pattern
among different approaches. In contrast, the difference occurs in southern China. For
instance, both MODIS and TEM estimates are lower in southern China in comparison to our
geostatistical estimates. In addition, the estimates of standard deviations with both statistical
methods show a large spatial variability (Fig. 3; regression one not shown). On a per unit area

Fig. 2 Estimated spatial distribution of TNPP (gram C per square meter per year): a regression-based TNPP,
b kriging-based TNPP, c TEM-based TNPP, and d MODIS-based TNPP
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basis, standard deviations of kriging estimates range from 10 to 142 g C m−2 year−1. In
general, the southern forests tend to have larger spatial variations of NPP than northern forest
ecosystems. This may be due to the larger magnitudes of NPP in the south, the larger NPP
results in the larger variations. In addition, the more diverse vegetation types in the south may
also contribute to its larger spatial NPP variations.

In developing regression models for two spatial statistical methods, the step-wise
regression procedure has been taken to select the final independent variables. Specifically,
in the beginning, we use independent variables of normalized difference vegetation index
(NDVI), leaf area index (LAI), and stand age in addition to those used in the current
models. However we find there are no significant improvements to our regressions and
spatial estimates by including NDVI, LAI, and stand age. The differences of annual
national forest TNPP are less than 1% between with and without considering NDVI, LAI,
and stand age. Thus, we do not include these two variables in our final calculations.
However, both our process-based model and two geospatial statistical approaches may still
overestimate the total NPP since we did not consider the stand age structure of forest
ecosystems due to the lack of spatially-explicit data at a national level. The same reality of
lacking of stand age data also occurred in an analysis of Chinese forest net ecosystem
productivity by Wang et al. (2007). In these estimates, we assume that the Chinese forests

Fig. 3 Standard deviations of TNPP (gram C per square meter per year) in Chinese forest ecosystems
estimated with the kriging method
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are matured. Abundant studies have long recognized that the forest stand age is a
controlling factor to NPP (e.g., McMurtrie et al. 1995; Gower et al. 1996). Thus, to improve
our future estimates, the data of stand age structure for Chinese forest ecosystems affected
by forest plantation, deforestation, fire and insect disturbances, and land-use changes are
needed (e.g., Wang et al. 2001; Zhao and Zhou 2005).

To test the robustness of our geospatial statistical methods, we conduct the delete-one
cross-validations (CV) according to

CV ¼
Xn
i¼1

Yi � bY ið Þ
� �2

n

,
ð8Þ

where bY ið Þ is the predicted value for the ith site by excluding Yi in the model fitting. To compare
the performance of multiple liner regression and kriging methods, we further compared the
CVs for both methods. The CVs for the kriging method are 13.8%, 8.3%, and 13.6% lower
than the regression method for TNPP, ANPP, and BNPP, respectively. This suggests that the
kriging method provides more accurate predictions than the regression method.

To examine if our geospatial methods could be used for a prediction purpose, we apply
our statistical models to the period from 1990 to 2002 driven by the spatially-explicit
climate data (Mitchell and Jones 2005) for national forest ecosystems at an 8 km×8 km
resolution. We find that the regression method provides a consistent higher estimate than
the kriging method during the period (Fig. 4). The standard deviations are consistently
bigger in the kriging method.

To examine the sensitivity of our geospatial statistical models, we conduct a set of
simulations by alternating climate driving variables of air temperature and precipitation.
Specifically, we disturb the climate: (a) change air temperature by 2°C, 0°C, and −2°C on

Fig. 4 Annual TNPP in Chinese forests estimated with a regression method and a kriging method. Standard
deviations are derived from total 30,920 8 km-resolution pixels
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original values; (b) change precipitation by 15%, 0%, and −15% on original values, (c)
change both air temperature and precipitation according to (a) and (b) simultaneously. The
ways to these changes for all forest grid cells are (a) with uniform changes for all cells and
(b) randomly changes of air temperature with a normal random variable distribution with a
mean 2°C, 0°C, and −2°C, respectively and a standard deviation 2; Precipitation is changed
with a Gamma random variable distribution with (a, b)=(289/9, 340/9) for the 15%
decrease and (a, b)=(529/9,460/9) for the15% increase. We find that, for both regression
and kriging approaches, the total NPP of Chinese forests are estimated with a change
ranging from a decrease 16% to an increase 17% in comparison to the standard simulations.
This means that the uncertain climate driving data we used could lead to an error for total
forest NPP ranging from 212 to 225 Tg C year−1 for the regression method and ranging
from 201 to 214 Tg C year−1 for the kriging method.

The kriging approach used here is similar to other geospatial approaches, which have
also considered the spatial dependence. Specifically, the kriging method used in our
analysis has considered the spatial correlation function rq :ð Þ, a spherical distance
correlation (Stein 2005; Weber and Talkner 1993). Other approaches include a
geographically weighted regression (GWR) method (Fotheringham et al. 2002; Mennis
2006), which has been used to estimate Chinese NPP (e.g. Wang et al. 2005). In addition,
the spatial autocorrelation approach is well known and has been shown effective in
capturing spatial dependence (Ord 1975). The approach was originally used to analyze the
spatial patterns for public health data (Elliott et al. 2000) and become a powerful tool for
analyzing the spatial-dependence problems in environmental sciences (e.g., Zhang and Lin
2008; Lennon 2000; Lichstein et al. 2002).

4 Conclusion

In the study, we use the surveyed NPP data at a series of representative sites and associated
ecological and environmental variables with a multiple linear regression method and a
kriging method to quantify Chinese forest NPP at a national level. The regression method and
kriging method estimate the Chinese forest NPP is 1,325±102 and 1,258±186 Tg C year−1,
respectively. Our developed geospatial statistical models could be good alternative tools to
estimate the Chinese forest NPP to meet the needs to better use Chinese forest resources. In
addition, we recommend that development of spatially-explicit data of stand age structure
should be a priority to accurately quantify the Chinese forest NPP in the future.
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