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ABSTRACT
Intensive land surface change and human activities induced by
rapid urbanization are the major causes of the urban heat island
(UHI) phenomenon. In this article, we examined the spatial varia-
bility of UHI and its relationships with land use and socioeconomic
patterns in the Baltimore–DC metropolitan area. Census data, road
network as well the digital elevation model (DEM) and average
water surface percentage were selected to analyse the correlation
between spatial patterns of UHI and socioeconomic factors. The
impervious surface (coefficient of determination R2 = 0.89) and
normalized difference vegetation index (R2 = 0.81) were the two
most important landscape factors, and population density
(R2 = 0.57) was the most influential socioeconomic variable in
contributing to the UHI intensity. Generally, the socioeconomic
variables had smaller influence on the UHI intensity than the
landscape variables. Based on the patch analysis, most of the
socioeconomic variables influenced the UHI intensity indirectly
through changing the physical environment (e.g. impervious sur-
face or forest cover). The selected landscape and socioeconomic
variables, except impervious surface percentage, demonstrated
third-order polynomial correlation with the UHI intensity. The
higher correlations were found within certain ranges such as forest
percentage from 0% to 30% and population density from 0 to
5000 km–2. This research provides a case study to understand the
urban land surface, vegetation, and microclimate for urban man-
agement and planning.
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1. Introduction

Rapid urbanization, triggered by the population growth and migration from rural to
urban areas, is one of the most important phenomena from the beginning of the
twenty-first century (Dale 1997; Rogers and McCarty 2000). Since the 1990s, more than
75% of the US population has resided in urban areas covering only about 3% of the US
land area (US Census 2011). It has been widely recognized that the magnitude and
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intensity of urbanization have produced profound impacts on our living environment
including the hydrological cycle, biogeochemical cycle, and the climate system (Kalnay
and Cai 2003; Ricketts and Imhoff 2003; Bounoua et al. 2009; Creutzig et al. 2015; Oleson
et al. 2015). As urbanization accelerates globally and more than half of the world’s
population is living in cities, it is importance to quantify and monitor the complex
interactions between the changing local environment and rapid urbanization associated
with evolving socioeconomic development (Chapin III 2008; Tang, Wang, and Yao 2008).

Urban heat island (UHI) is considered as one of the conspicuous problems resulting
from urbanization and human civilization in the twenty-first century (Rizwan, Dennis,
and Liu 2008; Imhoff et al. 2010). The typical land-use/land-cover change induced by
urbanization as converting natural vegetation and agricultural lands to impervious
surfaces, along with the increasing anthropogenic heat release, modify urban local
temperature and generate higher temperatures in urban areas than the surrounding
rural areas (Carlson and Arthur 2000; Arnfield 2003; Wilby 2008; Bounoua et al. 2009).
After discovered by Howard (1883) and defined by Manley (1958), the UHI has been
broadly studied for decades in its spatial distribution patterns (Gallo et al. 1999; Xu and
Chen 2004; Hart and Sailor 2009), daily-night dynamics (Giridharan, Ganesan, and Lau
2004; Schrijvers et al. 2015), seasonal variation (Gallo and Owen 1999; Yuan and Bauer
2007; Tomlinson et al. 2012), and temporal dynamics (Streutket 2003; Xu and Chen 2004;
Wang et al. 2015).

The determinants and causative factors of the UHI have been much less studied than
its spatial variability (Voogt and Oke 2003; Pu et al. 2006; Jenerette et al. 2007). Much
emphasis has been placed on the correlation between thermal pattern and urban land-
use land-cover pattern such as urban forest (Gallo et al. 1993; Weng, Lu, and Schubring
2004; Imhoff et al. 2010), impervious surface (Arnfield 2003; Xian et al. 2006; Zhang,
Zhong, and Wang 2009; Guo et al. 2015), and water area (Chen, Zhao, Li, 2006; Livesley,
McPherson, and Calfapietra 2016). For example, a negative relationship between thermal
pattern and the satellite-derived normalized difference vegetation index (NDVI) has been
extensively reported after the first exploration by Gallo et al. (1993). Besides the NDVI,
other satellite-derived indices such as normalized different building index (NDBI) (Chen
et al. 2006), normalized different water index (NDWI), and normalized different moisture
index (NDWI) (Gao 1996) have been developed and correlated with the land surface
temperature (LST). Fraction vegetation cover, which was less influenced by seasonal
variations than the NDVI, has slightly stronger negative correlation with urban LST
(Carlson, Gillies, and Perry 1994; Gutman and Ignatov 1998; Weng, Lu, and Schubring
2004; Mathew et al. 2015). Another commonly studied factor is impervious surface area
(Xian and Crane 2006; Guo et al. 2015). Compared to the rural surroundings, impervious
areas of cities differ considerably in albedo, thermal capacity, roughness, which modifies
the surface energy budget and LST in highly urbanized areas (Giridharan, Ganesan, and
Lau 2004; Hart and Sailor 2009; Weng, Rajasekar, and Hu 2011).

Anthropogenic heat released by human activities is another major source of UHI
(Zhou et al. 2012). It has been investigated through the correlation between the spatial
variations in surface temperatures and socioeconomic patterns such as population
density, industrial production, and household income. Buyantuyev and Wu (2010)
found the high correlation between daytime temperatures and median family income.
Jenerette et al. (2007) found that the surface temperature on an early summer day in
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Phoenix would decrease 0.28°C as neighbourhood annual median household income
increased by $10,000. Other related socioeconomic variables, such as electricity con-
sumption and traffic of vehicles have been explored as socioeconomic drivers of urban
heat island (Chen, Li, and Li 2003; Yue, Xu, and Xu 2010). The spatial pattern of UHI
within a city is usually the combined results of both physical environment and land-use
change caused by socioeconomic development (Wilson et al. 2003; Guo et al. 2015),
therefore, a simple correlation analysis between single factor and thermal pattern is not
enough to comprehensively understand the formation and development of UHI (Pu
et al. 2006, Wang et al. 2015). Therefore, it is critical to investigate the spatial variation of
UHI, land use, and socioeconomic patterns and to analyse the major driving forces
behind these variations for a better understanding of the urban thermal environment.

In this study, we examined the relationships between the spatial variation of urban heat
island, land use, and socioeconomic patterns in the Baltimore–DC Metropolitan Area. The
specific research questions are twofold: (1) what is the spatial pattern of LST and UHI
intensity at Baltimore–DC area and can the LST and UHI intensity be interpreted on the
basis of Landsat TM imagery? (2) Which land-use change or socioeconomic factor has a
more significant effect to the UHI and how they correlate with the spatial pattern of UHI
intensity? The UHI intensity, defined as the temperature difference (ΔT) between urban,
suburban and exurban locations (Tan et al. 2010), was used to evaluate the spatial
distribution of UHI at the study area. We combined the remote-sensing-derived UHI
intensity with the physical environment and socioeconomic status to examine the direct
and indirect causes of UHI. Fourteen variables were selected to represent the land use and
socioeconomic patterns. The examination of the relationships between UHI intensity, land
use, and socioeconomic patterns will help us examine the spatial variation of UHI and
understand the physical impact and indirect impact from social drivers on UHI patterns.

2. Data and methods

2.1. Study area

Our study area is the Baltimore–DC metropolitan area (Figure 1) covering an area around
14,000 km2. Centred at 76° 46ʹ W and 39° 18ʹ N, this area makes up less than 6% of the
Chesapeake Bay watershed but accounts for over 45% of its total population (Dougherty
et al. 2004). As one of the nation’s fastest growing regions, the Baltimore–DC metropo-
litan area has experienced rapid economic development and population growth since
1950 with more than 8 million residents in 2010 (U S Census 2011). The increasing
megalopolis patterns have modified the percentages in wetland, forest, and agriculture
ecosystems (Foresman, Pickett, and Zipperer 1997) and changed the local thermal
patterns (Figure 2). This trend has been extended for more than 30 years, eliciting
concern as early as the 1960s about emerging trends related to socioeconomic devel-
opment and urban environment degradation (Von Eckardt and Gottman 1964).

The Baltimore–DC metropolitan area is a representative coupled natural-human
ecosystems in the USA, and has a unique role in economics, politics, and cultural
activities (Lamptey, Barron, and Pollard 2005). The rapid land surface change with a
stable population growth led to regional climate change, strengthening the heat corri-
dor along the Baltimore–DC area (Viterito 1989). The increasing surface temperature
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difference between the weather stations in the downtown area and those in the rural
area in recent years has confirmed the UHI phenomenon in our study area (Baltimore
region as an example in Figure 2).

2.2. Data

We combined several data sources including Landsat Thematic Mapper (TM) imagery,
census data, road network, and digital elevation model (DEM) to examine the patterns of
UHI, land-use, and socioeconomic factors and their relationships. The Landsat TM

Figure 1. Location and land-use land-cover map of the study area.

Figure 2. (a) The monthly/yearly change of UHI intensity from 1990 to 2010; and (b) monthly
pattern in Baltimore–DC metropolitan area. Note: the UHI intensity was derived from the tempera-
ture difference between downtown station and rural station in Baltimore.
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imagery was used to derive surface temperature and land-use patterns. A subset image
from Landsat TM acquired on 22 August 2010 was used in this study. The conventional
Maximum Likelihood Classification (MLC) was performed to classify the land use/land
cover into residential, commercial/industrial, forest, grassland, barren land, cropland,
wetland, and water. The US census data were used to derive socioeconomic variables.
Socioeconomic variables, including population density, average age, median income,
unemployment rate, year of house built, number of households, and family size were
collected from the 2010 decennial US Census for all 1540 census tracts in the Baltimore–
DC metropolitan area. These socioeconomic variables were selected to represent distinct
socioeconomic characteristics of demographic status, settlement age, family size,
employment condition, respectively. We also used the Environmental Systems
Research Institute’s (ESRI’s) GIS road network to derive road density. DEM data with
30 m spatial resolution were obtained from USDA Data Gateway (USDA 2015). DEM data
was used to derive terrain pattern such as elevation and slope.

All the images, ESRI data, and census data were registered/reprojected to UTM
coordinate system (WGS 84, Zone 18) with root mean squared error (RMSE) of less
than 15 m.

2.3. Estimation of LST and UHI intensity from Landsat TM imagery

The Landsat TM thermal infrared band (10.4–12.5 μm) was utilized to derive LST and UHI
intensity. The digital numbers (DNs) of the infrared band was converted to at-satellite
brightness temperature (i.e. blackbody temperature, TB) with the hypothesis of uniform
emissivity (Landsat Project Science Office 2002; Chander and Markham 2003) using the
following equation:

TB ¼ K2

ln K1
Lλ
þ 1

� � (1)

with

Lλ ¼ Lmax � Lmin

Qmax � Qmin
DN� Qminð Þ þ Lmin; (2)

where TB is the effective at-satellite temperature in K; K1 (=607.76 W m–2 sr–1 μm–1) and
K2 (=1260.56 K) are pre-launch calibration constants; Lλ in W m–2 sr–1 μm–1) is the
spectral radiance or top-of-atmospheric (TOA) radiance measured by the Landsat sensor;
Qmax and Qmin are the minimum (=0) and maximum (=255) DN values; Lmax and Lmin are
the detected spectral radiance that are scaled to Qmax and Qmin; λ is the wavelength.

The blackbody temperature, TB, was then converted to the temperature at the surface
of nature land cover based on the spectral emissivity (ε) and the emissivity corrected LST
(St) were derived as follows (Artis and Carnahan 1982):

St ¼ TB
1þ λTB=ρð Þlnε with ρ ¼ hc=σ; (3)

where λ is the wavelength of emitted radiance, for which the peak response of average
limiting wavelengths (λ = 11.5 μm) (Markham and Barker 1985); σ is the Boltzmann
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constant (1.38 × 10–23 J K−1), h is the Planck’s constant (6.626 × 10–34 J s), and c is the
velocity of light (2.998 × 108 m s−1); ε is the target-specific surface emissivity which were
assigned based on our land-cover categories and emissivity values from Snyder et al.
(1998).

We examined the characteristics of the UHI intensity using the temperature difference
between the studied location and rural areas and compared the UHI among census tract.
First, the rural temperatures were derived by masking out all areas of clouds, open water
and urban or build up pixels. A mean planar surface was used to fit the ‘rural’ pixels to
determine the rural temperature (Tr), leaving only the heat island signature. We used the
temperature difference (ΔT) between the urban and build-up cells (Ts) and rural planar
surface (Tr) to measure the UHI intensity:

ΔT i; jð Þ ¼ Ts i; jð Þ � Tr; (4)

where Ts(i,j) is the LST of the land-cover type of urban and built-up at location (i, j), Tr is
the rural temperature normalized from the non-urban pixels.

2.4. Fraction maps derived from spectral mixture analysis and aggregation

Linear spectral mixture analysis (LSMA), one of most widely used sub-pixel classification
methods, was used to estimate the sub-pixel proportions of impervious surface in urban
environments (Lu et al. 2014; Tang, Wang, and Myint 2007; Weng, Lu, and Schubring
2004; Wu and Murray 2003). The LSMA has so far been the most popular approach in the
SMA family methods given its simple mathematical form (Adams et al. 1995; Cochrane
and Souza 1998; Roberts et al. 1998; Singer and McCord 1979):

Rn ¼
XE
e¼1

rn; efe þ εn with
XE
e¼1

fe ¼ 1 and 0 � fe � 1; (5)

where Rn is the normalized spectral reflectance after MNF-transformation for each band
n; fe is the fraction of endmember e; E is the total number of endmembers; rn,e denotes
the normalized spectral reflectance of endmember e within a pure pixel on band n; and
εn is the residual error.

Based on the aerial photo of the study area, we selected four endmembers for the
study area: high-albedo, low-albedo, vegetation, and soil. This four-endmember SMA
was applied to each pixel and the best endmember combination was automatically

chosen when the RMS (RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

n¼1
εnð Þ2

M

r
) was minimized with a reasonable fraction

(fractions between 0% and 100%) for each endmember class. For each grid cell, the high
albedo and low-albedo were merged to represent the impervious surface percentage.

We aggregated the forest pixels and water pixels of the land-cover map derived from
the MLC method to the census tract level to calculate the percentages of forest cover
and water cover. Road maps were overlapped with the census tract map and road
density was calculated by dividing total road length by the land area of each census
tract. We used the percentages of impervious surface, forest, and water, other three
landscape indicators (NDVI, elevation, and slope), and seven socioeconomic variables
(population density, medium income, number of households, medium age, house age,
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family size, and unemployment rate) to investigate the impact of land use and socio-
economic patterns on UHI. These socioeconomic variables were selected to represent
the distinct household characteristics to stand for their socioeconomic status, including
demographic characteristics, living condition, and economic status.

2.5. Statistical correlation analysis by Pearson’s correlation and path analysis

The statistical correlation analysis consisted of independent Pearson’s correlation
between the UHI intensity and the selected variables of land use/socioeconomic pattern.
We first used the linear regression and Pearson’s correlation to evaluate the relationship
between UHI and each variable. To further identify the interactions among UHI, land-
scape, and socioeconomic variables, a multivariate analysis based on the path analysis
model was used (Joreskog and Sorbom 1993; Akintunde 2012) to measure the direct
effects of land use and socioeconomic variables on UHI, the direct effects of socio-
economic variable on land use, and the indirect effects of the socioeconomic variables
on UHI through their influences on land use. Most of UHI studies selected the several
significant variables without considering the indirect impacts from other variables. For
example, impervious surface is highly related to UHI, while the population density has
much less impact on UHI through changing impervious surface. In fact, population
density increasing could exert influences on UHI through building more houses, paving
the roads and parking lots which increase impervious surface area. There has been
limited research on the contribution from less significant variables although these
variables are highly related to the significant ones.

We used path analysis to examine the direct and indirect effects of the landscape and
socioeconomic variables on UHI. Path analysis is one of the statistical methods to
analyse multiple dependent and independent variables (Jenerette et al. 2007) and to
measure the effects from dominant variables and insignificant ones. As a natural exten-
sion of regression analysis, path analysis method is a decision support tool that can
quantify the direct contributions to the UHI and indirect effects through other variables
to the UHI (Akintunde 2012). In this study, we first standardized all variables as follows:

Z ¼ X � μ

σ
; (6)

where µ is mean and σ is standard deviation. The linear regression analysis was then
used to derive the impact coefficient of each independent variable i on the UHI. The
independent variables included the selected 14 landscape and socioeconomic variables.
These direct impact coefficients, together with the correlation matrix (M) between two
variables, were used as partial regression coefficients to derive the indirect impact of
each variable. The total effect E(Xi, U) from any variable Xi to UHI intensity were
calculated as

E Xi;Uð Þ ¼ DE Xi;Uð Þ þ DEðX1;UÞ �Mði; 1Þ þ DEðX2;UÞ �Mði; 2Þ þ � � � þ DE Xn;Uð Þ
�Mði; nÞ; (7)

where E(Xi,U) and DE(Xi,U) are the total impact and direct impact coefficients from
variable i to UHI and M(i,n) is the correlation index between variable i and variable n.
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3. Results and discussion

3.1. Spatial distribution of UHI intensity

Figure 3 shows the Landsat-derived LST with the distribution of large populated
areas within the Baltimore–Washington metropolitan area. The LST ranges from
281.5 to 320.2 K with a mean of 299.4 K and standard deviation of 3.3 K. The
choropleth map (Figure 3) was produced based on the mean LST, indicating from
minimum to Maximum LST increasing by standard deviation (Smith 1986; Weng, Lu,
and Schubring 2004). High LST were identified extensively in the downtown areas
of Baltimore and Washington DC, and in the surrounding cities around the Central
Business District. Apparently, the eastern shore of the study area had larger LST
than the western region which was largely covered by farmland and forest area.
Several relatively large cities near Baltimore and Washington DC, such as Columbia,
Silver Spring, Alexandria, and Arlington had higher LST than the nearby rural areas,
and some cities in the forested region, such as Fredrick, Gaithersburg, and Dale City
(population larger than 60,000), also had larger LST than nearby rural areas. Many
high LST spots were found along the interstate highway 95 linking Baltimore and
Washington DC and the state highway 270 linking DC and Fredrick.

3.2. Correlation of UHI intensity with land use and socioeconomic patterns

The thermal signature of each LULC type was examined to better understand the
relationship between UHI and land use in the study area (Figure 4). It is clear that the
commercial/industrial area exhibited the highest mean LST (305.0 K), followed by the

Figure 3. Spatial distribution of land surface temperature with city population.
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residential area (301.5 K) and barren area (300.3 K). The natural surfaces had relatively
similar mean LST, with the lowest temperature in water (295.4 K), wetland (297.9 K), and
forest (298.3 K). This suggested that urban development increased the LST by at least
10 K by replacing the nature landscapes with non-transpiring, non-evaporating, and
non-infiltrating surfaces. The large standard deviation value of LST in commercial/
industrial (2.26) and residential area (2.33) indicated that variation in these areas may
be caused by the different construction materials and intensive human activities existing
within these types of land use. Because of distinctive characteristics in urban areas, a
further exploration on the spatial variation of LST caused by the land use and socio-
economic pattern is necessary.

Figure 5(a–e) show the distribution of UHI intensity with four selected variables with
two landscape variables – impervious surface and NDVI and two socioeconomic vari-
ables – population density and median income. There was a corresponding pattern
between UHI intensity and impervious surface, especially in the Central Business District
of Baltimore and DC. The higher similarity between UHI intensity and impervious surface
indicates that impervious surface had higher correlation with UHI intensity than other
variables and could be one important factor influencing the spatial distribution of UHI.

There was a small discrepancy between the UHI intensity and impervious surface
maps in the southeastern corner covered by a high dense forest area with scattered
houses (Figure 5(a–e)). Although this area had relatively a relatively low percentage of
impervious surfaces, some high temperature areas in linear shapes were identified. This
could be attributed to the high road density and the relatively high traffic volume
between this area and the area downtown DC. The NDVI image showed low NDVI
values in two urban centre areas corresponding with high UHI intensity; the lightest
area (with the largest NDVI) is in the southern DC area corresponding to the Prince
William Park and its surrounding areas and this highly forested area exhibited a small
but extremely homogeneous low UHI intensity. The NDVI showed a clear, negative

Figure 4. Mean land surface temperature of each land-use type with the error bar showing its
standard deviation.

INTERNATIONAL JOURNAL OF REMOTE SENSING 3453



relationship with the UHI intensity across nature and man-made land surfaces. These
results are similar with the research reported by Li et al. (2011) and Guo et al. (2015) who
studies the two largest cities, Shanghai and Guangzhou in China.

Compared to the physical land use, most socioeconomic variables showed lower
correlation with the UHI intensity (Figure 5(a–e)). The most influential socioeconomic
variable was population density which was highly correlated with the impervious surface
area, showing an increasing pattern from suburban area to downtown area with
increasing UHI intensity. Although most of high UHI intensity locations were associated
with high density population centres, several high UHI intensity areas were located in
the low population density areas, including the highway corridor connecting the military
centres in the southeastern corner to the city of Waldorf and Saint Charles. The high UHI
intensity in the low density population areas might be caused by the intensive traffic
within these areas, indicating that road density and road use frequency should be
considered in UHI studies. Median income had less correlation with UHI intensity than
the population density although median income is one of important economic indica-
tors for urbanization. The spatial variation of median income, with high values in the
western and southwestern DC and low values in eastern DC, showed that there might be
a slightly negative relationship between median income and the UHI intensity. These
spatial patterns between UHI intensity and physical landscape and socioeconomic

Figure 5. Patterns of selected biophysical and socioeconomic variables in Baltimore–DC metropoli-
tan region: (a) spatial pattern of UHI intensity, increasing from 0°C to 12°C; (b) impervious surface in
percentage (0–100%); (c) NDVI (0–1); (d) population density at census tract level (from 0 to 25,655
persons km–2); and (e) median income ($9150 to $247,064).
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variables indicate that the spatial variation of UHI intensity was not driven by one of
these variables alone, but by multiple variables. Some driving variables such as imper-
vious surface and forest percentage affect UHI directly, while other variables such as
population density and NDVI impact UHI indirectly though influencing other variables
(Jenerette et al. 2007). Therefore, it is essential to further examine both direct and
indirect effects of various driving factors on UHI intensity.

The relationships of UHI intensity with land use and socioeconomic patterns were
examined through Pearson’s correlation analysis at the census tract level (Table 1). The
impervious surface and NDVI showed higher correlations with the UHI intensity com-
pared to other variables. The strongest correlate was impervious surface, followed by
NDVI and forest percentage. Other positive correlations included population density,
road density, unemployment rate, and house age, while negative correlations included
forest percentage, mean elevation, family size, median age, median income, mean
elevation, and number of households. The variables related to urbanization such as
impervious surface expanding and road construction and socioeconomic development
could increase the UHI intensity. The variables improving the urban environment and
the human wellbeing such as planting trees and increasing family income could
decrease the UHI intensity. Most physical land use had relatively higher Pearson’s
correlation coefficient and are important factors controlling the distribution of the UHI
intensity. Socioeconomic variables had relatively low coefficient of variation (mean = 0.62)
than landscape variables (mean = 1.00). The lower difference in socioeconomic variables
than landscape variables made them less detectable in influencing the UHI intensity.
Although the direct impact of socioeconomic development is not as significant as that of
land use, the interaction between land use and socioeconomic variables indicates that
these influences could be created indirectly through changing the physical environment
by intensive human activities.

Table 1. Descriptive statistics of land use, socioeconomic variables aggregated averagely on the
census tract level and correlation with UHI intensity.

Variable Minimum Maximum Mean (SD)
Coefficient
of variation

Pearson’s
correlation

UHI intensity 0.03 8.57 2.78 (1.77) 0.64
(a) Land use
Impervious surface (%) 0.05 93.39 29.59 (20.67) 0.70 0.94
Mean NDVI 0.00 0.65 0.39 (0.13) 0.33 –0.89
Forest (%) 0.00 82.10 15.45 (15.52) 1.00 –0.71
Road density (km–1) 0.00 36.39 5.88 (4.67) 0.79 0.63
Mean elevation (m) 2.18 264.32 70.13 (46.27) 0.66 –0.44
Water (%) 0.00 20.94 0.49 (1.51) 3.08 –0.20
Slope (°) 0.48 11.27 3.28 (1.46) 0.45 –0.05

(b) Socioeconomic variable
Population density
(1000 persons km–2)

0.00 25.66 2.62 (2.36) 1.11 0.63

Unemployment (%) 0.00 57.10 7.05 (6.90) 0.98 0.40
House age 0 75 39 (25) 0.64 0.36
Family size 1 5 2.60 (0.44) 0.17 –0.28
Median age 17 77 36.29 (5.63) 0.16 –0.27
Median household income
(thousand $)

0 247 64 (49) 0.77 –0.26

Number of households 0 6242 1681 (891) 0.53 –0.14

SD stands standard deviation.
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The multivariate model was constructed and then the path analysis model was
developed to investigate the direct and indirect effects of these variables on the UHI
intensity. Table 2 summarizes the direct and indirect impacts of each variable. The
impervious surface, population density, unemployment rate, family size, median age,
and number of households were positively correlated with UHI intensity, while mean
NDVI, forest percentage, road density, mean elevation, water percentage, slope, house
age, and median income were negatively correlated with UHI intensity. Most variables
had negative direct impact on the UHI intensity. Impervious surface had the highest
direct impact (0.87), and its impact was much higher than the total effect of all negative
factors. Mean NDVI, road density, forest percentage, and population density showed
negligible negative direct impacts (–0.05 and –0.09) on the UHI intensity, they had
relatively high indirect impact (–0.84 and 0.71) due to their high correlation with the
impervious surface. Forest percentage (–0.62) and population density (0.62) had high
indirect impacts and small direct impacts. Mean elevation, unemployment rate, and
house age had moderate effects on UHI intensity (–0.44, 0.40, and 0.37), while the least
correlation were found for water percentage (–0.20), number of households (–0.15), and
slope (–0.06). These might be attributed to their small spatial variation among tracts
(Table 1) and less correlation with impervious surface.

Figure 6 shows the detailed correlation of UHI intensity with its direct and indirect
variables. The impervious surface explained 87% of direct impact on the spatial variation
of UHI intensity, followed by mean elevation (10%), road density (9%) and forest
percentage (8%). Other variables had small direct impacts and most of them showed
indirect impact on the UHI intensity through influencing the impervious surface percen-
tage. Among those variables, the mean NDVI (–0.89 total effect) and forest percentage (–
0.71) were the two most important physical landscape variables, while the population
density (0.67) and unemployment rate (0.39) were the two most important socioeco-
nomic variables. The road density was also highly related to the UHI intensity (0.62)

Table 2. Total, direct, and indirect effects of landscape and socioeconomic patterns on UHI intensity.

Variable
Total effect

on UHI intensity Direct Indirect

(a) Land use
Impervious surface (%) 0.9396 0.8731 0.0665
Mean NDVI –0.8892 –0.0450 –0.8442
Forest (%) –0.7059 –0.0834 –0.6224
Road density (km–1) 0.6241 –0.0906 0.7147
Mean elevation (m) –0.4400 –0.0942 –0.3457
Water (%) –0.1965 –0.0283 –0.1683
Slope (°) –0.0519 –0.0244 –0.0275

(b) Socioeconomic variables
Population density (thousand km–2) 0.6240 0.0044 0.6196
Unemployment (%) 0.3983 0.0454 0.3529
House age 0.3694 –0.0014 0.3709
Family size –0.2796 0.0879 –0.3675
Median age –0.2637 0.0035 –0.2672
Median household income
(thousand $)

–0.2426 –0.0035 –0.2391

Number of households –0.1487 0.0169 –0.1656

The direct effect is the correlation between each variable and UHI intensity while the indirect effect is the combined
impact index through impervious surface.
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mainly because road intensity was correlated with impervious surface (0.73). The least
important variables were slope (–0.02) and number of households (0.02) and their total
effect values (–0.05 and –0.15) were the lowest among all variables. The low correlation
between UHI intensity, impervious surface, and number of household indicates that
constructing housing itself is not the most significant reason causing the UHI while
community development such as paving the road and constructing public buildings and
parking lot which significantly increase the albedo and modify the radiation fluxes,
increasing the UHI intensity in the Baltimore–DC area.

3.3. Management implications for urban climate at local scale

Urbanization is one of the most important components of global change and modifies
the land surface, species diversity, and quality of human life (Hope et al. 2003; Jenerette
et al. 2007). Improved understanding of urbanization induced local climate change will
help us develop a more sustainable environment for rapidly growing urban areas. Within
the Baltimore–DC metropolitan region, the UHI intensity was strongly related with the
impervious surface (coefficient of determination R2 = 0.89) and NDVI (R2 = 0.81). Using
bivariate linear regression analysis (Figure 7), we estimated the UHI intensity of census
tract could increase by 0.45°C with every 10% increase of impervious surface percentage.
Although most of the impervious surface within tracts ranged from 0% to 50%, a clear
linear relationship was found between impervious surface and UHI intensity. The major-
ity of mean NDVI values were between 0.3 and 0.6, showing a clear negative correlation
with UHI intensity within this range. The tracts with NDVI smaller than 0.3 showed a
weaker decreasing trend compared to the tracts with larger NDVI. This indicates that it is
important to manage the area having medium to high vegetation cover since a small
increase of NDVI in these areas could significantly reduce the UHI intensity. NDVI values
were calculated based on all the types of vegetation. The spatial variation of NDVI can
be influenced by many factors such as vegetation types, topography, slope, and solar
radiation availability (Walsh et al. 1997). When we mitigate the urban micro-scale climate
impact with the help of vegetation, we need to consider the planting location,

Figure 6. Path analysis results showing the determinants of UHI intensity. Note: the left part of
figure shows the direct impact factors with regression coefficients larger than 0.05 and right part is
the indirect impact factors through impervious surface.
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vegetation type, the potential growth pattern as well as the neighbouring environment
to improve its effectiveness. The strong correlation between forest percentage and UHI
intensity (Table 2) indicates that forest could be the most important vegetation type for
the mitigation of the UHI effects.

A closer look at the correlation between forest percentage and UHI intensity indicated
that the relationship between vegetation and UHI was not linear in Baltimore–DC region.
The forest percentage also showed negative correlation with the UHI intensity but different
changing trend compared to NDVI. We found a dramatic decrease in the UHI intensity when
the forest percentage increased from 0% to 30% and this pattern levelled off when the
fraction increased to 40% or larger. This indicates that planting trees could significantly
reduce the UHI intensity and improve the local urban climate in the high density build-up
area. However, in the high density forest area (forest percentage >50%), the tree cover could
be less important than other landscape or socioeconomic for controlling UHI variables.

Figure 8 shows the bivariate relationship between UHI intensity and three most influential
socioeconomic variables. Both increasing population density and unemployment rate could
increase the UHI intensity positively, especially in the low value ranges. The highest correla-
tions between population density and UHI intensity were found in the tracts with population
density from 0 to 5000 persons km–2, with the correlation levelling off in the tracts with
population density higher than 10,000 persons km–2. There are two possible reasons: (1) the
number of census tracts with high population density (>1000 persons km–2) was low; and (2)
most of these high density tracts were distributed between the downtown area and suburban
areas. The cooling effect from the neighbouring suburban area could reduce the UHI intensity

Figure 7. Scatter plots of bivariate relationship between UHI intensity and three most influential
land-use variables.
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in this area. Themedian income showed relatively clear negative correlationwith UHI intensity
when median income ranged from $0 to $100,000, and their relationship was weaker when
median income exceeded $150,000. These high income tracts (median income > $150,000)
are located in the western Baltimore and DC area with low impervious surface percentage
(average percentage = 12%) and high forest coverage (average percentage = 28%). Increasing
the unemployment rate could slightly increase the UHI intensity, especially for the tracts with
an unemployment rate between 10% and 20%. Most of the tracts with very high unemploy-
ment rate are located either in downtown Baltimore or eastern DC area with high UHI
intensity (average = 2.6°C). The tracts with high unemployment rate but low UHI intensity
either had high forest coverage (forest coverage 28% with UHI intensity 0.7°C) or had high
NDVI (mean NDVI 0.39 with UHI intensity 1.3°C). All selected variables had some correlation, to
a higher or lower degree, with the UHI intensity which further indicates that the UHI intensity
was influenced by multiple variables and these variables affect each other through direct or
indirect impacts. To implement the urban planning to mitigate the UHI phenomenon, we
need to consider not only the landscape pattern and socioeconomic variables but also their
interactions.

4. Conclusions

This study explored the spatial variation of LST and UHI intensity in the Baltimore–DC
metropolitan area and investigated the relationships between UHI, land use, and

Figure 8. Scatter plots of bivariate relationship between UHI intensity and three most influential
socioeconomic variables.
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socioeconomic patterns. Most of high LST locations were found in the downtown urban
area of Baltimore and DC, with several small UHI hot spots in the suburban areas. The
impervious surfaces, especially the commercial/industrial areas with intensive human
activities in the downtown area, exhibit the strongest UHI intensity and highest LST. The
results indicate that UHI is a complex phenomenon and a single factor approach can
hardly explain the UHI and its distribution. Among all the landscape indicators, the
impervious surface and NDVI are the two most influential factors in determining the UHI
intensity through the modification of radiation and evaporation patterns. The factors
with least impact are water percentage and slope.

The socioeconomic patterns show less important impact on the UHI intensity com-
pared to the land use; meanwhile, socioeconomic factors have indirect impacts on UHI
intensity through changing the percentage of the impervious surfaces. The highest
influential socioeconomic factor is population density due to its high correlation with
impervious surface. Other socioeconomic variables such as unemployment rate, house
built year, and median income, show low correlation with impervious surface and little
impact on the UHI intensity. With the evaluation of land use and socioeconomic
patterns, we found that fast socioeconomic development areas are always correlated
with high percentages of impervious surface, and therefore, high mean surface tem-
perature and high UHI intensity. However, when socioeconomic development reaches a
certain level, such as the census tracts with high median income and small number of
households, it usually associates with low impervious surface and high vegetation cover.
These areas are usually found in the suburban or rural-to-urban transition area as
impervious surface and population are low with a decreased intensity of the UHI
phenomenon.

This research extended the traditional UHI research by addressing multiple UHI
contributing factors including both landscape and socioeconomic variables using a
path analysis model. While the spatial variation in the UHI has been studied and many
impact variables, such as vegetation cover, impervious surface, have been investigated
previously, our analysis examined comprehensive mechanisms by analysing the spatial
variability of LST and UHI intensity for a heterogeneous region and selecting multiple
driving variables. These results enhanced previous studies in three ways. First, compared
to previous UHI studies focusing on one or two impact factors, we selected a compre-
hensive set of land use and socioeconomic factors to investigate the social-ecological-
climate correlation in a highly urbanized area. Second, previous research focused on the
direct impact, this study extended the concept to the direct and indirect impact using a
path analysis model by treating the urban as one ecosystem. Third, our study provided a
case study for more specific questions in urban microclimate such as how to fully
understand the well-established relationships between land surface, vegetation, and
microclimate (Hanamean et al. 2003; Smith and Johnson 2004) and how to implement
these results in urban management and planning. The further steps for this study will be
multiple year and inter-annual change of spatial pattern of the UHI and how these
relationships vary through time in seasonal cycle and inter-annual change. Further
exploration on these questions will help us to differentiate the impact of each variable
and better understand the physical and socioeconomic causes of UHI to develop more
sustainable urban environments.
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