Global Ecology Group
Home | People | Research | Publications | Models | Data | In the News
| Professional Activities


We have used the following models in our research. Please feel free to contact us if you have questions about any of these models.

1. Process-based ecosystem models

(1) PnET-CN

PnET-CN is a process-based model that simulates carbon, water, and nitrogen dynamics of forest ecosystems at monthly time steps (Aber et al. 1997; Ollinger et al. 2002). Though primarily a temperate forest model, the model has been adapted to grassland systems (e.g., Reich et al. 1999) and work is currently underway to generalize the model and produce a simple, alternative model applicable to all terrestrial ecosystem types.

We have translated the code of PnET-CN from Matlab to C, and also modified the model to run at the daily time step. We have successfully integrated PnET-CN and a Bayesian parameter estimation approach, Metropolis Markov chain Monte Carlo (MCMC). We have tested PnET-MCMC by optimizing 14 selected parameters. Our preliminary results show that the optimization of parameters using carbon fluxes from flux towers can constrain model parameters and significantly improve the model performance for simulating carbon fluxes. Our next step is to optimize the key parameters of PnET-CN using multiple constraints including carbon and water fluxes as well as streamwater chemistry and examine the coupling of carbon, water and nitrogen cycles

We recently generalized PnET-CN and made it applicable to grasslands, shrublands, and savannas. This version was implemented in R. The R code of the generalized PnET-CN can be downloaded here (Generalized PnET-CN). The following paper should be cited for this version:

Thorn, A., Xiao, J., Ollinger, S.V. (2015) Generalization and evaluation of the process-based forest ecosystem model PnET-CN for other biomes. Ecosphere 6(3):43. [PDF]

(2) Terrestrial Ecosystem Model (TEM)

TEM is a global biogeochemistry model that simulates the cycling of carbon, nitrogen, and water among vegetation, soils, and the atmosphere at monthly time steps. TEM has been used to examine the time-dependent responses of terrestrial carbon storage and the net carbon exchange with the atmosphere as influenced by historical climate, atmospheric CO2, land use, and soil thermal regime. The model structure and parameterization are well documented elsewhere (e.g., Raich et al., 1991; Tian et al., 1999; Zhuang et al., 2003).

We have used TEM to examine the impacts of severe extended drought on terrestrial carbon cycling in mid-latitude regions in past work (Xiao et al. 2009). Our results show that severe extended droughts substantially affected the terrestrial carbon budget in China during the 20th century.

2. Data-driven modeling approach (EC-MOD)

Our EC-MOD system upscales fluxes from tower footprint to regional, continental or global scales to produce gridded flux fields over these broad regions. The core of our system is a data-driven approach based on an ensemble of regression models (Xiao et al. 2008). This approach relies on rule-based models, each of which is a set of conditions associated with a multivariate linear submodel. These rule-based, piecewise regression models allow both numerical (e.g., carbon fluxes, temperature, vegetation index) and categorical variables (e.g., land cover type) as input variables, and account for possible nonlinear relationships between predictive and target variables. We have used EC-MOD to produce gridded flux fields (GPP and NEE) for temperate North America over the period 2000-2006 (Xiao et al. 2008, 2010, 2011).